Warm mix asphalt (WMA) technologies allow the production, lay-down and compaction of asphalt mixtures at reduced temperatures and the use of higher amounts of reclaimed asphalt pavement (RAP) with respect to conventional hot mix asphalt (HMA), leading to significant environmental benefits and energy savings. However, limited data is available on the long-term performance of such pavements. The objective of this study was to predict the long-term performance of an existing warm recycled motorway pavement (made with WMA mixtures containing RAP) constructed in 2016 in central Italy, along with the corresponding hot recycled pavement (made with HMA mixtures containing RAP).
View Article and Find Full Text PDFThe development of innovative and sustainable materials for use in asphalt pavement applications has received increasing attention over the past 20 years, also thanks to the growing interest in the circular economy approach, which is replacing the linear one [...
View Article and Find Full Text PDFPolymer-modified bitumens are usually employed for enhancing the mixture performance against typical pavement distresses. This paper presents an experimental investigation of bitumens added with two plastomeric compounds, containing recycled plastics and graphene, typically used for asphalt concrete dry modification. The goal was to study the effects of the compounds on the rheological response of the binder phase, as well the adhesion properties, in comparison with a reference plain bitumen.
View Article and Find Full Text PDFThe cold recycling of reclaimed asphalt (RA) for the rehabilitation of end-of-life pavements is becoming very common. Cold recycled asphalt mixtures (CRAMs) are characterised by a curing time, required to reach the material design mechanical performance. Since the laboratory simulation of the long-term field curing is not yet a standardised procedure, a CRAM was laid as binder course in a full-scale trial section that was monitored for more than two years.
View Article and Find Full Text PDF