Mental health is vital to human well-being, and prevention strategies to address mental illness have a significant impact on the burden of disease and quality of life. With the recent developments in body-worn sensors, it is now possible to continuously collect data that can be used to gain insights into mental health states. This has the potential to optimize psychiatric assessment, thereby improving patient experiences and quality of life.
View Article and Find Full Text PDFThe paper proposes two architectures for a dynamically scalable network-on-chip (NoC) for dynamically reconfigurable intellectual properties (IPs) to save power. The first architecture is a run-time scalable column-based NoC, where the columns of the NoC are scaled up and down at run-time depending on the demands to connect reconfigurable IPs. The second architecture is an extension of the first, where both the rows and columns of the NoC are dynamically scaled up and down on demand.
View Article and Find Full Text PDFAccording to the Pan American Health Organization, cardiovascular disease is the leading cause of death worldwide, claiming an estimated 17.9 million lives each year. This paper presents a systematic review to highlight the use of IoT, IoMT, and machine learning to detect, predict, or monitor cardiovascular disease.
View Article and Find Full Text PDFPrecise instrument segmentation aids surgeons to navigate the body more easily and increases patient safety. While accurate tracking of surgical instruments in real-time plays a crucial role in minimally invasive computer-assisted surgeries, it is a challenging task to achieve, mainly due to: (1) a complex surgical environment, and (2) model design trade-off in terms of both optimal accuracy and speed. Deep learning gives us the opportunity to learn complex environment from large surgery scene environments and placements of these instruments in real world scenarios.
View Article and Find Full Text PDFThe world is facing the COVID-19 pandemic, leading to an unprecedented change in the lifestyle routines of millions. Beyond the general physical health, financial, and social repercussions of the pandemic, the adopted mitigation measures also present significant challenges in the population's mental health and health programs. It is complex for public organizations to measure the population's mental health in order to incorporate it into their own decision-making process.
View Article and Find Full Text PDFObjective: To assess the potential of automated machine-learning methods for recognizing urinary stones in endoscopy.
Materials And Methods: Surface and section images of 123 urinary calculi (109 ex vivo and 14 in vivo stones) were acquired using ureteroscopes. The stones were more than 85% 'pure'.
Annu Int Conf IEEE Eng Med Biol Soc
November 2021
Image-based tracking of laparoscopic instruments plays a fundamental role in computer and robotic-assisted surgeries by aiding surgeons and increasing patient safety. Computer vision contests, such as the Robust Medical Instrument Segmentation (ROBUST-MIS) Challenge, seek to encourage the development of robust models for such purposes, providing large, diverse, and high-quality datasets. To date, most of the existing models for instance segmentation of medical instruments were based on two-stage detectors, which provide robust results but are nowhere near to the real-time, running at 5 frames-per-second (fps) at most.
View Article and Find Full Text PDFColor-based image segmentation classifies pixels of digital images in numerous groups for further analysis in computer vision, pattern recognition, image understanding, and image processing applications. Various algorithms have been developed for image segmentation, but clustering algorithms play an important role in the segmentation of digital images. This paper presents a novel and adaptive initialization approach to determine the number of clusters and find the initial central points of clusters for the standard K-means algorithm to solve the segmentation problem of color images.
View Article and Find Full Text PDF