Publications by authors named "Gilberto Aleph Prieto"

MicroRNAs play a pivotal role in rapid, dynamic, and spatiotemporal modulation of synaptic functions. Among them, recent emerging evidence highlights that microRNA-181a (miR-181a) is particularly abundant in hippocampal neurons and controls the expression of key plasticity-related proteins at synapses. We have previously demonstrated that miR-181a was upregulated in the hippocampus of a mouse model of Alzheimer's disease (AD) and correlated with reduced levels of plasticity-related proteins.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is one of the most devastating diseases that currently affects the aging population. Recent evidence indicates that DM is a risk factor for many brain disorders, due to its direct effects on cognition. New findings have shown that the microtubule-associated protein tau is pathologically processed in DM; however, it remains unknown whether pathological tau modifications play a central role in the cognitive deficits associated with DM.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a devastating neurodegenerative disorder that impairs memory and causes cognitive and psychiatric deficits. New evidences indicate that AD is conceptualized as a disease of synaptic failure, although the molecular and cellular mechanisms underlying these defects remain to be elucidated. Determining the timing and nature of the early synaptic deficits is critical for understanding the progression of the disease and for identifying effective targets for therapeutic intervention.

View Article and Find Full Text PDF