Publications by authors named "Gilbert Walker"

For the creation of smaller and smaller electrical devices and fundamental studies, Kelvin Probe Force Microscopy (KPFM) offers a technique that measures the surface potential with nanometer lateral resolution and allows for a more precise understanding of properties such as the work function, the localization of charges and the doping of materials. Despite its obvious potential, the complexity of its implementation is currently a bottleneck for its extensive application. Here, we introduce a step-by-step overview of the different experimental parameters that need to be controlled in PF-KPFM to ensure their useful effect on the measured contact potential difference.

View Article and Find Full Text PDF

Competitive binding of distinct molecules in the hydrogel interior can facilitate dynamic exchange between the hydrogel and the surrounding environment. The ability to control the rates of sequestration and release of these molecules would enhance the hydrogel's functionality and enable targeting of a specific task. Here, we report the design of a colloidal hydrogel with two distinct pore dimensions to achieve staged, diffusion-controlled scavenging and release dynamics of molecules undergoing competitive binding.

View Article and Find Full Text PDF

The overall 5-year survival rate of ovarian cancer (OC) is generally low as the disease is often diagnosed at an advanced stage of progression. To save lives, OC must be identified in its early stages when treatment is most effective. Early-stage OC causes the upregulation of lysophosphatidic acid (LPA), making the molecule a promising biomarker for early-stage detection.

View Article and Find Full Text PDF

Electron-induced dissociation of a fluorocarbon adsorbate CF (ad) at 4.6 K is shown by Scanning Tunnelling Microscopy (STM) to form directed energetic F-atom 'projectiles' on Cu(110). The outcome of a collision between these directed projectiles and stationary co-adsorbed allyl 'target' molecules was found through STM to give rotational excitation of the target allyl, clockwise or anti-clockwise, depending on the chosen collision geometry.

View Article and Find Full Text PDF

The development of in vitro models recapitulating nanoparticle transport under physiological flow conditions is of great importance for predicting the efficacy of nanoparticle drug carriers. Liposomes are extensively used for drug delivery owing to their biocompatibility and biodegradability and the ability to carry both hydrophilic and hydrophobic compounds. Here, we used a library of liposomes with various dimensions and a microfluidic platform comprising a large array of uniformly sized breast cancer spheroids to explore size-dependent liposome internalization and retention in the spheroids under close-to-physiological interstitial conditions.

View Article and Find Full Text PDF

Blue perovskite light-emitting diodes (LEDs) have shown external quantum efficiencies (EQEs) of more than 10%; however, devices that emit in the true blue-those that accord with the emission wavelength required for Rec. 2100 primary blue-have so far been limited to EQEs of ~6%. We focused here on true blue emitting CsPbBr colloidal nanocrystals (c-NCs), finding in early studies that they suffer from a high charge injection barrier, a problem exacerbated in films containing multiple layers of nanocrystals.

View Article and Find Full Text PDF

Colloidal clusters and gels are ubiquitous in science and technology. Particle softness has a strong effect on interparticle interactions; however, our understanding of the role of this factor in the formation of colloidal clusters and gels is only beginning to evolve. Here, we report the results of experimental and simulation studies of the impact of particle softness on the assembly of clusters and networks from mixtures of oppositely charged polymer nanoparticles (NPs).

View Article and Find Full Text PDF

Under healthy conditions, pro- and anti-phagocytic signals are balanced. Cluster of Differentiation 47 (CD47) is believed to act as an anti-phagocytic marker that is highly expressed on multiple types of human cancer cells including acute myeloid leukemia (AML) and lung and liver carcinomas, allowing them to escape phagocytosis by macrophages. Downregulating CD47 on cancer cells discloses calreticulin (CRT) to macrophages and recovers their phagocytic activity.

View Article and Find Full Text PDF

Integrin α11β1 is a collagen-binding integrin that is needed to induce and maintain the myofibroblast phenotype in fibrotic tissues and during wound healing. The expression of the α11 is upregulated in cancer-associated fibroblasts (CAFs) in various human neoplasms. We investigated α11 expression in human cutaneous squamous cell carcinoma (cSCC) and in benign and premalignant human skin lesions and monitored its effects on cSCC development by subjecting α11-knockout ( ) mice to the DMBA/TPA skin carcinogenesis protocol.

View Article and Find Full Text PDF

We hereby propose the use of stable, biocompatible, and uniformly sized polymeric micelles as high-radiotracer-payload carriers at region-of-interest with negligible background activity due to no or low offsite radiolysis. We modified glycol chitosan (GC) polymer with varying levels of palmitoylation (P) and quaternization (Q). Quaternary ammonium palmitoyl glycol chitosan (GCPQ) with a Q:P ratio of 9:35 (Q9P35GC) offers >99% biocompatibility at 10 mg mL−1.

View Article and Find Full Text PDF

Plant-derived phytoglycogen nanoparticles (PhG NPs) have the advantages of size uniformity, dispersibility in water, excellent lubrication properties, and lack of cytotoxicity; however, their chemical functionalization may lead to loss of NP structural integrity. Here, we report a straightforward approach to the generation of PhG NP conjugates with biologically active molecules. Hydrogen bonding of bovine serum albumin with electroneutral PhG NPs endows them with additional ligand binding affinity and enables the electrostatically governed attachment of methotrexate (MTX), a therapeutic agent commonly used in the treatment of cancer and arthritis diseases, to the protein-capped NPs.

View Article and Find Full Text PDF

Phonon polaritons (PhPs) offer extreme confinement of optical fields and strong dispersion in the mid-infrared spectral region. To study the propagation and interference of PhPs in a 1-D system, we employ scattering scanning near-field optical microscopy (s-SNOM), analytical, and computational techniques to describe the resonance behavior observed in boron nitride nanotubes (BNNTs). In BNNTs of a sufficiently small length, the reflected standing waves from both terminals strongly interfere with one another, leading to large constructive enhancement at select wavelengths through the Fabry-Pérot interference.

View Article and Find Full Text PDF

Transitional composition between two thin-film morphologies of the block copolymer, polystyrene--poly(-butyl acrylate) (PS--PtBuA), was investigated using near-field infrared spectroscopy and atomic force microscopy mechanical measurements. These techniques allowed block identification with nanoscale spatial resolution and elucidated the material's sub-surface composition. PS was found to form coronae around the PtBuA block in spherical valleys on flat areas of the film, and coronae of PtBuA surrounding the PS lamellae were observed at the edge of the polymer film, where parallel lamellae are formed.

View Article and Find Full Text PDF

Phytoglycogen nanoparticles (PhG NPs), a single-molecule highly branched polysaccharide, exhibit excellent water retention, due to the abundance of close-packed hydroxyl groups forming hydrogen bonds with water. Here we report lubrication properties of close-packed adsorbed monolayers of PhG NPs acting as boundary lubricants. Using direct surface force measurements, we show that the hydrated nature of the NP layer results in its striking lubrication performance, with two distinct confinement-controlled friction coefficients.

View Article and Find Full Text PDF

Serotonin, an important signaling molecule in humans, has an unexpectedly high lipid membrane affinity. The significance of this finding has evoked considerable speculation. Here we show that membrane binding by serotonin can directly modulate membrane properties and cellular function, providing an activity pathway completely independent of serotonin receptors.

View Article and Find Full Text PDF