In this study, domestic wastewater was given a second life as dilution medium for concentrated organic waste streams, in particular artificial food waste. A two-step continuous process with first volatile fatty acid (VFA)/hydrogen production and second electricity production in microbial fuel cells (MFCs) was employed. For primary treatment, bioreactors were optimized to produce hydrogen and VFAs.
View Article and Find Full Text PDFMicrobial fuel cells (MFCs) are novel bioelectrochemical devices for spontaneous conversion of biomass into electricity through the metabolic activity of the bacteria. Microbial production of electricity may become an important source of bioenergy in future because MFCs offer the possibility of extracting electric current from a wide range of soluble or dissolved complex organic wastes and renewable biomass. However, the materials used in these devices are still not economic and researchers use different materials as cathode and anode in MFCs.
View Article and Find Full Text PDFMicrobial fuel cells (MFCs) have gained a lot of attention in recent years as a mode of converting organic waste including low-strength wastewaters and lignocellulosic biomass into electricity. Microbial production of electricity may become an important form of bioenergy in future because MFCs offer the possibility of extracting electric current from a wide range of soluble or dissolved complex organic wastes and renewable biomass. A large number of substrates have been explored as feed.
View Article and Find Full Text PDF