Publications by authors named "Gilbert L Henry"

Neurons in the cortex are heterogeneous, sending diverse axonal projections to multiple brain regions. Unraveling the logic of these projections requires single-neuron resolution. Although a growing number of techniques have enabled high-throughput reconstruction, these techniques are typically limited to dozens or at most hundreds of neurons per brain, requiring that statistical analyses combine data from different specimens.

View Article and Find Full Text PDF

The anatomy of many neural circuits is being characterized with increasing resolution, but their molecular properties remain mostly unknown. Here, we characterize gene expression patterns in distinct neural cell types of the visual system using genetic lines to access individual cell types, the TAPIN-seq method to measure their transcriptomes, and a probabilistic method to interpret these measurements. We used these tools to build a resource of high-resolution transcriptomes for 100 driver lines covering 67 cell types, available at http://www.

View Article and Find Full Text PDF

Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a ubiquitous mechanism that generates transcriptomic diversity. This process is particularly important for proper neuronal function; however, little is known about how RNA editing is dynamically regulated between the many functionally distinct neuronal populations of the brain. Here, we present a spatial RNA editing map in the brain and show that different neuronal populations possess distinct RNA editing signatures.

View Article and Find Full Text PDF

The insect mushroom body (MB) is a conserved brain structure that plays key roles in a diverse array of behaviors. The MB is the primary invertebrate model of neural circuits related to memory formation and storage, and its development, morphology, wiring, and function has been extensively studied. MBs consist of intrinsic Kenyon Cells that are divided into three major neuron classes (γ, α'/β' and α/β) and 7 cell subtypes (γd, γm, α'/β'ap, α'/β'm, α/βp, α/βs and α/βc) based on their birth order, morphology, and connectivity.

View Article and Find Full Text PDF
Article Synopsis
  • Rod and cone photoreceptors share similarities but have key functional and molecular differences.
  • Researchers studied DNA methylation and chromatin accessibility in mouse photoreceptors to understand these differences in relation to gene expression and transcription factors.
  • The study found that loss of a specific gene (NR2E3) in rods leads to changes making their epigenetic profile resemble that of cones, while also revealing that rods have unique hypo-methylated regions potentially linked to their development.
View Article and Find Full Text PDF

Neuronal diversity is essential for mammalian brain function but poses a challenge to molecular profiling. To address the need for tools that facilitate cell-type-specific epigenomic studies, we developed the first affinity purification approach to isolate nuclei from genetically defined cell types in a mammal. We combine this technique with next-generation sequencing to show that three subtypes of neocortical neurons have highly distinctive epigenomic landscapes.

View Article and Find Full Text PDF

We describe an engineered family of highly antigenic molecules based on GFP-like fluorescent proteins. These molecules contain numerous copies of peptide epitopes and simultaneously bind IgG antibodies at each location. These 'spaghetti monster' fluorescent proteins (smFPs) distributed well in neurons, notably into small dendrites, spines and axons.

View Article and Find Full Text PDF

Many tools are available to analyse genomes but are often challenging to use in a cell type-specific context. We have developed a method similar to the isolation of nuclei tagged in a specific cell type (INTACT) technique [Deal,R.B.

View Article and Find Full Text PDF

The impact of microarray studies on neurobiology has been limited because, with the exception of a few outstanding papers, most reports provide little more than lists of genes, often leaving the reader at a loss to understand which and how many of the identified transcripts will be true positives with significant biological impact. However, some recent papers have offered considerable biological insight by providing independent in vivo confirmation of the roles of candidate genes, offering a glimpse of the potential power of microarrays in neurobiological research.

View Article and Find Full Text PDF