Publications by authors named "Gilbert Koskey"

Maize production under low-input agricultural systems in semi-arid areas of Sub-Saharan Africa faces significant challenges, primarily stemming from the synergistic impacts of climate variability and suboptimal agronomic practices. Harnessing soil microbiota, particularly arbuscular mycorrhizal fungi (AMF), represents a pivotal strategy for bolstering low-input systems. However, their functional utility is contingent upon their compatibility with the prevailing environmental conditions and biotic interactions.

View Article and Find Full Text PDF

Background: Global food supply is highly dependent on field crop production that is currently severely threatened by changing climate, poor soil quality, abiotic, and biotic stresses. For instance, one of the major challenges to sustainable crop production in most developing countries is limited nitrogen in the soil. Symbiotic nitrogen fixation of legumes such as soybean (Glycine max (L.

View Article and Find Full Text PDF

The increasing interest in the use of rhizobia as biofertilizers in smallholder agricultural farming systems of the Sub-Saharan Africa has prompted the identification of a large number of tropical rhizobia strains and led to studies on their diversity. Inoculants containing diverse strains of rhizobia have been developed for use as biofertilizers to promote soil fertility and symbiotic nitrogen fixation in legumes. In spite of this success, there is paucity of data on rhizobia diversity and genetic variation associated with the newly released and improved mid-altitude climbing (MAC) bean lines ( L.

View Article and Find Full Text PDF

Climbing bean ( L.) production in Kenya is greatly undermined by low soil fertility, especially in agriculturally prolific areas. The use of effective native rhizobia inoculants to promote nitrogen fixation could be beneficial in climbing bean production.

View Article and Find Full Text PDF