To identify the independent spatial and temporal activities of the essential developmental gene the Otx2, the germline mutation of which is lethal at embryonic day 8.5, we floxed one allele and substituted the other with an inducible CreER recombinase gene. This makes 'trans' self-knockout possible at any developmental stage.
View Article and Find Full Text PDFThe paired-type homeodomain transcription factor Otx2 is essential for forebrain and eye development. Severe ocular malformations in humans have recently been associated with heterozygous OTX2 mutations. To document the molecular defects in human mutants, Otx2 structural characterization was carried out.
View Article and Find Full Text PDFOur previous structural analysis of mouse Otx2 transcripts has revealed the existence of three different promoters and suggested that the corresponding mRNAs could exhibit specific expression patterns. Here, we analyze the precise dynamics of their expression throughout mouse development. Their spatial distribution was determined by isoform-specific in situ hybridization and their relative abundance by real-time reverse transcriptase-polymerase chain reaction.
View Article and Find Full Text PDFIn this work, we report the implication of the pleckstrin homology (PH) domain-containing protein CKIP-1 in phosphatidylinositol 3-kinase (PI3-K)-regulated muscle differentiation. CKIP-1 is upregulated during muscle differentiation in C2C12 cells. We show that CKIP-1 binds to phosphatidylinositol 3-phosphate through its PH domain and localizes to the plasma membrane in a PI3-K-dependent manner.
View Article and Find Full Text PDFThe mouse Otx2 gene is essential throughout head and brain development, from anterior-posterior polarity determination and neuroectoderm induction to post-natal sensory organ maturation. These numerous activities must rely on a very finely tuned regulation of expression. In order to understand the molecular control of the Otx2 gene, we set out to isolate its promoter.
View Article and Find Full Text PDF