199Three-dimensional (3D) scaffolds composed of various biomaterials, including metals, ceramics, and synthetic polymers, have been widely used to regenerate bone defects. However, these materials possess clear downsides, which prevent bone regeneration. Therefore, composite scaffolds have been developed to compensate these disadvantages and achieve synergetic effects.
View Article and Find Full Text PDFThis study reveals a methodological research for predicting mechanical properties of phosphor films through the chemical crosslinking reaction of methyl silicone resin during fabrication of the phosphor films. Crosslinking point according to the type of methyl silicone resins was verified through the magnitude of the absorption peak of the functional group and the curing reaction heat. Then, we measured mechanical properties of the fabricated phosphor films.
View Article and Find Full Text PDFSilicone resin has recently attracted great attention as a high-power Light Emitting Diode (LED) encapsulant material due to its good thermal stability and optical properties. In general, the abrupt curing reaction of the silicone resin for the LED encapsulant during the curing process induces reduction in the mechanical and optical properties of the LED product due to the generation of residual void and moisture, birefringence, and residual stress in the final formation. In order to prevent such an abrupt curing reaction, the reduction of residual void and birefringence of the silicone resin was observed through experimentation by introducing the multi-step cure processes, while the residual stress was calculated by conducting finite element analysis that coupled the heat of cure reaction and cure shrinkage.
View Article and Find Full Text PDF