Publications by authors named "Gil Martin Emilio"

Disruption of the glycosylation machinery is a common feature in many types of cancer, and colorectal cancer (CRC) is no exception. Core fucosylation is mediated by the enzyme fucosyltransferase 8 (FucT-8), which catalyzes the addition of α1,6-l-fucose to the innermost GlcNAc residue of -glycans. We and others have documented the involvement of FucT-8 and core-fucosylated proteins in CRC progression, in which we addressed core fucosylation in the syngeneic CRC model formed by SW480 and SW620 tumor cell lines from the perspective of alterations in their -glycosylation profile and protein expression as an effect of the knockdown of the gene that encodes FucT-8.

View Article and Find Full Text PDF
Article Synopsis
  • - Epigenetic changes play a crucial role in the development of oral cancer, with both genetic factors and environmental stressors contributing to tumor formation and progression.
  • - Melatonin shows promise in reversing harmful (epi)genetic changes in cancer, potentially enhancing the effectiveness of traditional treatments like radiation and chemotherapy while reducing their side effects.
  • - There's a growing push for more clinical trials involving melatonin to better understand its role in improving outcomes and quality of life for oral cancer patients, moving beyond preclinical research.
View Article and Find Full Text PDF

Epithelial cells can undergo apoptosis by manipulating the balance between pro-survival and apoptotic signals. In this work, we show that TRAIL-induced apoptosis can be differentially regulated by the expression of α(1,6)fucosyltransferase (FucT-8), the only enzyme in mammals that transfers the α(1,6)fucose residue to the pentasaccharide core of complex N-glycans. Specifically, in the cellular model of colorectal cancer (CRC) progression formed using the human syngeneic lines SW480 and SW620, knockdown of the FucT-8-encoding gene significantly enhanced TRAIL-induced apoptosis in SW480 cells.

View Article and Find Full Text PDF

The purpose of this systematic review is to provide an overview of the existing knowledge on the therapeutic potential of melatonin to counteract the undesirable effects of chemotherapy in breast cancer patients. To this aim, we summarized and critically reviewed preclinical- and clinical-related evidence according to the PRISMA guidelines. Additionally, we developed an extrapolation of melatonin doses in animal studies to the human equivalent doses (HEDs) for randomized clinical trials (RCTs) with breast cancer patients.

View Article and Find Full Text PDF

Sulfur and nitrogen mustards, bis(2-chloroethyl)sulfide and tertiary bis(2-chloroethyl) amines, respectively, are vesicant warfare agents with alkylating activity. Moreover, oxidative/nitrosative stress, inflammatory response induction, metalloproteinases activation, DNA damage or calcium disruption are some of the toxicological mechanisms of sulfur and nitrogen mustard-induced injury that affects the cell integrity and function. In this review, we not only propose melatonin as a therapeutic option in order to counteract and modulate several pathways involved in physiopathological mechanisms activated after exposure to mustards, but also for the first time, we predict whether metabolites of melatonin, cyclic-3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, and N1-acetyl-5-methoxykynuramine could be capable of exerting a scavenger action and neutralize the toxic damage induced by these blister agents.

View Article and Find Full Text PDF

The present study explored the impact of inhibiting α(1,6)fucosylation (core fucosylation) on the functional phenotype of a cellular model of colorectal cancer (CRC) malignization formed by the syngeneic SW480 and SW620 CRC lines. Expression of the gene encoding α(1,6)fucosyltransferase was inhibited in tumor line SW480 by a combination of shRNA-based antisense knockdown and agglutinin (LCA) selection. LCA-resistant clones were subsequently assayed in vitro for proliferation, migration, and adhesion.

View Article and Find Full Text PDF

Agro-foodindustries generate colossal amounts of non-edible waste and by-products, easily accessible as raw materials for up-cycling active phytochemicals. Phenolic compounds are particularly relevant in this field given their abundance in plant residues and the market interest of their functionalities (e.g.

View Article and Find Full Text PDF

Viral infections constitute a tectonic convulsion in the normophysiology of the hosts. The current coronavirus disease 2019 (COVID-19) pandemic is not an exception, and therefore the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, like any other invading microbe, enacts a generalized immune response once the virus contacts the body. Melatonin is a systemic dealer that does not overlook any homeostasis disturbance, which consequently brings into play its cooperative triad, antioxidant, anti-inflammatory, and immune-stimulant backbone, to stop the infective cycle of SARS-CoV-2 or any other endogenous or exogenous threat.

View Article and Find Full Text PDF

Blister or vesicant chemical warfare agents (CWAs) have been widely used in different military conflicts, including World War I and the Iran-Iraq War. However, their mechanism of action is not fully understood. Sulfur and nitrogen mustard exert toxic effects not only through the alkylation of thiol-bearing macromolecules, such as DNA and proteins, but also produce free radicals that can develop direct toxic effects in target organs such as the eyes, skin, and respiratory system.

View Article and Find Full Text PDF

The α(1,6)fucose residue attached to the N-glycoprotein core is suspected to play an essential role in the progression of several types of cancer. Lectins remain the first choice for probing glycan modifications, although they may lack specificity. Thus, efforts have been made to identify new lectins with a narrower core fucose (CF) detection profile.

View Article and Find Full Text PDF

The world faces an exceptional new public health concern caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), subsequently termed the coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO). Although the clinical symptoms mostly have been characterized, the scientific community still doesn´t know how SARS-CoV-2 successfully reaches and spreads throughout the central nervous system (CNS) inducing brain damage. The recent detection of SARS-CoV-2 in the cerebrospinal fluid (CSF) and in frontal lobe sections from postmortem examination has confirmed the presence of the virus in neural tissue.

View Article and Find Full Text PDF

The wide variety of epigenetic controls available is rapidly expanding the knowledge of molecular biology even overflowing it. At the same time, it can illuminate unsuspected ways of understanding the etiology of cancer. New emerging therapeutic horizons, then, promise to overcome the current antitumor strategies need.

View Article and Find Full Text PDF

Within the last few decades, melatonin has increasingly emerged in clinical oncology as a naturally occurring bioactive molecule with substantial anticancer properties and a pharmacological profile optimal for joining the currently available pharmacopeia. In addition, extensive experimental data shows that this chronobiotic agent exerts oncostatic effects throughout all stages of tumor growth, from initial cell transformation to mitigation of malignant progression and metastasis; additionally, melatonin alleviates the side effects and improves the welfare of radio/chemotherapy-treated patients. Thus, the support of clinicians and oncologists for the use of melatonin in both the treatment and proactive prevention of cancer is gaining strength.

View Article and Find Full Text PDF

Aims and experimental design. The acute-phase protein haptoglobin (Hp) has been recently detected in colorectal cancer (CRC) tissue, where its expression correlates with metastasis. Recently, we identified Hp as a CDw75 antigen-expressing protein in colorectal tissue.

View Article and Find Full Text PDF

Kawasaki disease (KD) is the most common cause of acquired heart disease with unknown etiology among children in developed countries. Acute inflammation of the vasculature, genetic susceptibility and immunopathogenesis based on a transmittable and infectious origin, are the pathologic events involved in the early inflammatory etiology and progression of this disease. However, the exact causes of KD remain unknown.

View Article and Find Full Text PDF

The CDw75 epitope is an α(2,6) sialylated antigen overexpressed in colorectal cancer (CRC), where its expression correlates with the progression of the disease. The CDw75 epitope is located mainly in N-glycoproteins, whose identity remains unknown. The aim of the present study was to identify proteins with the CDw75 epitope as a strategy to deepen the understanding of molecular pathogenesis of CRC and to identify novel biomarkers for this disease.

View Article and Find Full Text PDF

Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke.

View Article and Find Full Text PDF

Background: Although colorectal carcinogenesis has been intensively studied, the published investigations do not provide a consistent description of how different carbohydrate determinants of colorectal epithelium are modified in colorectal cancer (CRC).

Objective: This study is an attempt to characterize the terminal fucosylation steps responsible for the synthesis of mono- Le(a)/Le(x)- and difucosylated -Le(b)/Le(y)- Lewis antigens in healthy and tumour CRC tissue.

Methods: An immunohistochemical study of Lewis antigens' expression was undertaken, along with screening of the fucosyltransferase (FT) activities involved in their synthesis, on healthy and tumour samples from 18 patients undergoing CRC.

View Article and Find Full Text PDF

Aims: Fucosylation is regulated by fucosyltransferases, the guanosine diphosphate-L-fucose (GDP-L-Fuc) synthetic pathway, and the GDP-L-fucose transporter (GDP-L-Fuc Tr). We have reported previously an increased level of α(1,6)fucosyltransferase activity and expression in colorectal cancer (CRC). The present study aimed to analyse the expression profiles of the FX enzyme and GDP-L-Fuc Tr in a cohort of operated CRC patients to elucidate their role in α(1,6)fucosylation in this neoplasm.

View Article and Find Full Text PDF

Background: A universal hallmark of cancer cells is the change in their glycosylation phenotype. One of the most frequent alterations in the normal glycosylation pattern observed during carcinogenesis is the enhancement of α(1,6)linked fucose residues of glycoproteins, due to the up-regulation of the α(1,6)fucosyltransferase activity. Our previous results demonstrated the specific alteration of this enzyme activity and expression in colorectal cancer, suggesting its implication in tumour development and progression.

View Article and Find Full Text PDF

Objective: CDw75 is an α(2,6)-sialylated antigen associated with a poor prognosis in gastric cancer. In the present study, we examined if CDw75 expression in colorectal cancer (CRC) predicts tumour recurrence. Besides, we evaluated CDw75 expression in different colorectal tissue specimens to clarify their role in tumour development and progression.

View Article and Find Full Text PDF

Background: Increased ST6Gal I activity has been associated with the alpha(2,6)sialylation enhancement of membrane glycoconjugates observed in metastatic colorectal carcinomas (CRC). Siaalpha(2,6)Galbeta(1,4)GlcNAc sequence, known as CDw75, is a sialylated carbohydrate determinant generated by the ST6Gal I. This epitope has been reported to be associated with the progression of gastric and colorectal tumours, hence there are only a few conclusive studies to date.

View Article and Find Full Text PDF

Changes in enzyme activity and the expression levels of alpha(1,6)fucosyltransferase [alpha(1,6)FT] have been reported in certain types of malignant transformations. To develop a better understanding of the role of alpha(1,6)FT in human colorectal carcinoma (CRC), we analysed the enzyme activity in healthy and tumour tissues. alpha(1,6)FT activity was considerably higher in tumour tissue than in healthy tissue and was related to gender, lymph node metastasis, type of growth and tumour stage.

View Article and Find Full Text PDF

Objectives: The aim of the present study was to investigate the activity of CMP-NeuAc:Galbeta(1,4)GlcNAc sialyltransferase (ST6Gal I) in colorectal cancer (CRC).

Methods: ST6Gal I activity was determined in healthy, transitional and tumor tissues from the same patient using asialotransferrin and N-acetyllactosamine as acceptors.

Results: ST6Gal I activities with asialotransferrin (n = 85) and N-acetyllactosamine (n = 40) as acceptors were statistically significantly enhanced in CRC tissue compared with healthy mucosa from the same patient (p = 0.

View Article and Find Full Text PDF