Publications by authors named "Gil Marom"

This study evaluates the efficacy of annuloplasty repair as a standalone procedure for treating bileaflet mitral valve prolapse with mitral regurgitation (MR). Various flexible ring bands for MR of different severities were compared to assess their biomechanical impact and treatment outcomes. Computational beating heart models, based on the Living Heart Human Model, were utilized to simulate annuloplasty repairs.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates optimal sizes of the annular and sinotubular junctions in aortic valve repair while keeping the cusp height constant through computer simulations.
  • A computational model created 125 virtual anatomies, finding that changes to the annular diameter had a more significant effect on valve performance than alterations in the sinotubular junction diameter.
  • Results indicate that an ideal valve configuration occurs when the sinotubular junction is 2-4 mm larger than the annulus, which leads to better coaptation height and lower stress on the valve cusps.
View Article and Find Full Text PDF

Increased cardiac stiffness hinders proper left ventricular (LV) expansion, resulting in decreased volume and diastolic dysfunction. LV expanders are spring-like devices designed to improve diastolic function by facilitating mechanical outward expansion. Implantations in animals and humans have shown promising results, yet further evaluation is needed to assess a range of functions and the risk of use.

View Article and Find Full Text PDF

Endovascular aortic aneurysm repair is a minimally invasive procedure with low mortality and morbidity. Clinical studies have revealed that a displacement force (DF) can cause stent graft (SG) migration in some circumstances requiring repeated intervention. This study aims to determine the relationship between the SG curvature and the calculated DF from four patient-specific computational fluid dynamics models.

View Article and Find Full Text PDF

A substantial proportion of heart failure patients have a preserved left ventricular (LV) ejection fraction (HFpEF). This condition carries a high burden of morbidity and mortality and has limited therapeutic options. left ventricular pressure overload leads to an increase in myocardial collagen content, causing left ventricular stiffening that contributes to the development of heart failure patients have a preserved left ventricular ejection fraction.

View Article and Find Full Text PDF

In recent years, several transcatheter systems have been introduced for treatment of common mitral regurgitation (MR). Such a system that is based on indirect mitral annuloplasty (IMA) is currently indicated for functional MR. Very few clinical studies have been performed to assess the efficiency and durability of such devices, despite their high risk of fracture resulting from ongoing exposure to large cyclic deformations.

View Article and Find Full Text PDF

Introduction: This study proposes a computational fluid dynamics model of a human placenta's independent exchange unit (placentome) to assess the effect that the inner villi distribution and decidual veins (DVs) location and number, have on the oxygen uptake.

Methods: The internal placentome porosity distribution was altered in symmetric morphology, while asymmetry was introduced by varying the location and number of DVs. The DV asymmetry was introduced by either displacing them circumferentially, thereby changing the angle between them, or by adding DVs in the inlet cross-section.

View Article and Find Full Text PDF

Mitral valve regurgitation (MR) is a common valvular heart disease where an improper closure leads to leakage from the left ventricle into the left atrium. There is a need for less-invasive treatments such as percutaneous repairs for a large inoperable patient population. The aim of this study is to compare several indirect mitral annuloplasty (IMA) percutaneous repair techniques by finite-element analyses.

View Article and Find Full Text PDF

Numerical modeling of heart biomechanics can realistically capture morphological variations in diseases and has been helpful in advancing our understanding of the physiology. Subject-specific models require anatomic representation of medical images, and it is desirable to have a consistently repeatable models for any given morphology. In this study, we propose a novel and easily adaptable cardiac reconstruction algorithm by morphing an existing discretized mesh of an advanced finite element (FE) model, to match anatomies acquired from porcine cardiac magnetic resonance imaging (cMRI) scans.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is commonly caused by traumatic mechanical damage. Although numerical models can help predict the mechanics of SCI without putting the subjects in danger, previous studies did not focus on alternations in cerebrospinal fluid (CSF) pressure and did not account for the presence of epidural fat. This study aims to numerically compare the mechanical behavior of the human spine when subjected to contusion and burst fracture with varying CSF pressure, either normal or elevated pressure that represents intracranial hypertension.

View Article and Find Full Text PDF

Objective: Mitral valve regurgitation (MR) is a common valvular heart disease where improper closing causes leakage. Currently, no transcatheter mitral valve device is commercially available. Raanani (co-author) and colleagues have previously proposed a unique rotational implantation, ensuring anchoring by metallic arms that pull the chordae tendineae.

View Article and Find Full Text PDF

Coronary artery obstruction (CAO), a fatal complication of transcatheter aortic valve replacement (TAVR), is commonly found after Valve-in-Valve implantation inside a degenerated bioprosthetic valve. Leaflet laceration (BASILICA technique) has been proposed to prevent CAO and to potentially reduce the risk of leaflet thrombosis. We have previously demonstrated that this technique can reduce the anchorage forces of the TAVR device, which may lead to future complications.

View Article and Find Full Text PDF

Subclinical leaflet thrombosis is becoming a major concern in valve-in-valve procedures, whereby a transcatheter aortic valve device is deployed inside a failed bioprosthetic surgical valve. Blood flow stagnation and prolonged residence times in the neo-sinuses have been suggested as possible explanations for leaflet thrombosis. The BASILICA technique, which was originally developed to treat coronary flow obstruction, has also been proposed as an alternative to reduce the risk of thrombus formation.

View Article and Find Full Text PDF

Leaflet thrombosis has been suggested as the reason for the reduced leaflet motion in cases of hypoattenuated leaflet thickening of bioprosthetic aortic valves. This work aimed to estimate the risk of leaflet thrombosis in two post-valve-in-valve (ViV) configurations, using five different numerical approaches. Realistic ViV configurations were calculated by modelling the deployments of the latest version of transcatheter aortic valve devices (Medtronic Evolut PRO, Edwards SAPIEN 3) in the surgical Sorin Mitroflow.

View Article and Find Full Text PDF

Heart valve diseases are common disorders with five million annual diagnoses being made in the United States alone. All heart valve disorders alter cardiac hemodynamic performance; therefore, treatments aim to restore normal flow. This paper reviews the state-of-the-art clinical and engineering advancements in heart valve treatments with a focus on hemodynamics.

View Article and Find Full Text PDF

Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure that provides an effective alternative to open-heart surgical valve replacement for treating advanced calcific aortic valve disease patients. However, complications, such as valve durability, device migration, paravalvular leakage (PVL), and thrombogenicity may lead to increased overall post-TAVR morbidity and mortality. A series of numerical studies involving a self-expandable TAVR valve were performed to evaluate these complications.

View Article and Find Full Text PDF

Transport of nutrients and waste between the maternal and fetal circulations during pregnancy takes place at the final branches of the placental villous trees. Therefore, and unsurprisingly, pregnancy complications have been related to the maldevelopment of terminal villi. However, a deep analysis of placental villous morphology has been limited by tissue processing and imaging techniques.

View Article and Find Full Text PDF

Transcatheter aortic valve implantation (TAVI) is currently recommended in practice guidelines for patients who are at intermediate to high surgical risk for surgical aortic valve replacement. Coronary artery obstruction is a fatal complication of TAVI that occurs in up to 3.5% of the implantations inside a failed surgical bioprosthetic valve (valve-in-valve, ViV).

View Article and Find Full Text PDF

Calcific aortic valve disease (CAVD) is characterized by stiffened aortic valve leaflets. Bicuspid aortic valve (BAV) is the most common congenital heart disease. Transcatheter aortic valve replacement (TAVR) is a treatment approach for CAVD where a stent with mounted bioprosthetic valve is deployed on the stenotic valve.

View Article and Find Full Text PDF

Transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical valve replacement in high-risk patients afflicted by severe aortic stenosis. Despite newer-generation devices enhancements, post-procedural complications such as paravalvular leakage (PVL) and related thromboembolic events have been hindering TAVR expansion into lower-risk patients. Computational methods can be used to build and simulate patient-specific deployment of transcatheter aortic valves (TAVs) and help predict the occurrence and degree of PVL.

View Article and Find Full Text PDF

Transcatheter aortic valve replacement (TAVR) is a minimally-invasive approach for treating severe aortic stenosis. All clinically-used TAVR valves to date utilize chemically-fixed xenograft as the leaflet material. Inherent limitation of the tissue (e.

View Article and Find Full Text PDF

Bioresorbable vascular scaffolds (BVS) provide transient vessel support for occluded coronary arteries while resorbing over time, potentially allowing vessel restoration approximating the native, healthy state. Clinical trials indicate that the Absorb BVS (Abbott Vascular, Santa Clara, CA) performance was similar to that of the Xience metallic drug-eluting stent (DES), with low long-term complications rates. However, when under-deployed in very small vessels (diameter < 2.

View Article and Find Full Text PDF

Calcific aortic valve disease (CAVD) is a progressive disease in which minerals accumulate in the tissue of the aortic valve cusps, stiffening them and preventing valve opening and closing. The process of valve calcification was found to be similar to that of bone formation including cell differentiation to osteoblast-like cells. Studies have shown the contribution of high strains to calcification initiation and growth process acceleration.

View Article and Find Full Text PDF

Transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical aortic valve replacement (SAVR) in high-risk elderly patients with calcified aortic valve disease. All currently FDA-approved TAVR devices use tissue valves that were adapted to but not specifically designed for TAVR use. Emerging clinical evidence indicates that these valves may get damaged during crimping and deployment- leading to valvular calcification, thrombotic complications, and limited durability.

View Article and Find Full Text PDF