Publications by authors named "Gil M Novo-Filho"

Objective: To report the effectiveness of early molecular diagnosis in the clinical management of rare diseases, presenting 8 patients with 8p23.1DS who have clinical features that overlap the phenotypic spectrum of 22q11.2DS.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) has altered clinical genetic testing by widening the access to molecular diagnosis of genetically determined rare diseases. However, physicians may face difficulties selecting the best diagnostic approach. Our goal is to estimate the rate of possible molecular diagnoses missed by different targeted gene panels using data from a cohort of patients with rare genetic diseases diagnosed with exome sequencing (ES).

View Article and Find Full Text PDF
Article Synopsis
  • Rare diseases, often genetic, were studied in 500 patients using exome sequencing (ES), resulting in a diagnostic yield of 31.6% with 164 primary findings.
  • The majority of findings were from autosomal dominant conditions (61.6%), with significant rates of successful diagnosis in younger children and those with specific conditions like gastrointestinal diseases.
  • Notably, 15.6% of patients had potential for improved care through targeted therapies, and secondary findings in 37 patients could increase life expectancy by over 123 years for the cohort combined.
View Article and Find Full Text PDF

Overcoming challenges for the unambiguous detection of copy number variations is essential to broaden our understanding of the role of genomic variants in the clinical phenotype. With the improvement of software and databases, whole-exome sequencing quickly can become an excellent strategy in the routine diagnosis of patients with a developmental delay and/or multiple congenital malformations. However, even after a detailed analysis of pathogenic single-nucleotide variants and indels in known disease genes, using whole-exome sequencing, some patients with suspected syndromic conditions are left without a conclusive diagnosis.

View Article and Find Full Text PDF
Article Synopsis
  • Bloom syndrome (BS) is a rare genetic disorder characterized by growth deficiencies, immune system issues, and a higher likelihood of developing cancers due to defects in DNA repair mechanisms, particularly linked to mutations in the BLM gene.* -
  • The study involved two patients diagnosed with BS, where researchers used RNA-seq to analyze gene expression differences between these patients and healthy controls, identifying 216 genes related to immune response and apoptosis.* -
  • Findings indicate that altered gene expression in immune and apoptosis pathways may explain BS symptoms like recurrent infections and growth problems, highlighting the potential of transcriptome analysis in understanding other chromosome instability disorders.*
View Article and Find Full Text PDF

Objectives: Collagen VI-related dystrophies (COL6-RDs) have a broad clinical spectrum and are caused by mutations in the COL6A1, COL6A2 and COL6A3 genes. Despite the clinical variability, two phenotypes are classically recognized: Bethlem myopathy (BM, milder form) and Ullrich congenital muscular dystrophy (UCMD, more severe form), with many patients presenting an intermediate phenotype. In this work, we present clinical and genetic data from 28 patients (27 families), aged 6-38 years (mean of 16.

View Article and Find Full Text PDF

Mosaic trisomy 12 is a rare anomaly, and only 9 cases of live births with this condition have been reported in the literature. The clinical phenotype is variable, including neuropsychomotor developmental delay, congenital heart disease, microcephaly, cutaneous spots, facial asymmetry, prominent ears, hypotonia, retinopathy, and sensorineural hearing loss. A 2-year-old female presented with neuropsychomotor developmental delay, prominent forehead, dolichocephaly, patchy skin pigmentation, and unexpected overgrowth at birth.

View Article and Find Full Text PDF

Objective: The human genome contains several types of variations, such as copy number variations, that can generate specific clinical abnormalities. Different techniques are used to detect these changes, and obtaining an unequivocal diagnosis is important to understand the physiopathology of the diseases. The objective of this study was to assess the diagnostic capacity of multiplex ligation-dependent probe amplification and array techniques for etiologic diagnosis of syndromic patients.

View Article and Find Full Text PDF

The most prevalent structural variations in the human genome are copy number variations (CNVs), which appear predominantly in the subtelomeric regions. Variable sizes of 4p/4q CNVs have been associated with several different psychiatric findings and developmental disability (DD). We analyzed 105 patients with congenital anomalies (CA) and developmental and/or intellectual disabilities (DD/ID) using MLPA subtelomeric specific kits (P036 /P070) and 4 of them using microarrays.

View Article and Find Full Text PDF

Congenital anomalies are the second highest cause of infant deaths, and, in most cases, diagnosis is a challenge. In this study, we characterize patterns of DNA copy number aberrations in different samples of post-mortem tissues from patients with congenital malformations. Twenty-eight patients undergoing autopsy were cytogenomically evaluated using several methods, specifically, Multiplex Ligation-dependent Probe Amplification (MLPA), microsatellite marker analysis with a MiniFiler kit, FISH, a cytogenomic array technique and bidirectional Sanger sequencing, which were performed on samples of different tissues (brain, heart, liver, skin and diaphragm) preserved in RNAlater, in formaldehyde or by paraffin-embedding.

View Article and Find Full Text PDF

Genome rearrangements are caused by the erroneous repair of DNA double-strand breaks, leading to several alterations that result in loss or gain of the structural genomic of a dosage-sensitive genes. However, the mechanisms that promote the complexity of rearrangements of congenital or developmental defects in human disease are unclear. The investigation of complex genomic abnormalities could help to elucidate the mechanisms and causes for the formation and facilitate the understanding of congenital or developmental defects in human disease.

View Article and Find Full Text PDF

Introduction: Bloom syndrome is a rare, autosomal recessive, chromosomal instability disorder caused by mutations in the BLM gene that increase the risk of developing neoplasias, particularly lymphomas and leukemias, at an early age.

Case Presentation: Case 1 was a 10-year-old Brazilian girl, the third child of a non-consanguineous non-Jewish family, who was born at 36 weeks of gestation and presented with severe intrauterine growth restriction. She had Bloom syndrome and was diagnosed with a unilateral Wilms' tumor at the age of 3.

View Article and Find Full Text PDF