In this paper, we have observed an atomic-scale structure and compositional variation at the interface of the InGaN/GaN multi-quantum wells (MQW) by both scanning transmission electron microscopy (STEM) using high-angle annular dark-field mode and atom probe tomography (APT). The iso-concentration analysis of APT results revealed that the roughness of InGaN/GaN interface increased as the MQW layers were filled up, and that the upper interface of MQW (GaN/InGaN to the p-GaN side) was much rougher than that of the lower interface (InGaN/GaN tot he n-GaN side). On the basis of experimental results, it is suggested that the formation of interface roughness can affect the quantum efficiency of InGaN-based light-emitting diodes.
View Article and Find Full Text PDFThe design and synthesis of two-dimensional (2D) polymers is a challenging task, hitherto achieved in solution only through the aid of a solid surface "template" or preorganization of the building blocks in a 2D confined space. We present a novel approach for synthesizing free-standing, covalently bonded, single-monomer-thick 2D polymers in solution without any preorganization of building blocks on solid surfaces or interfaces by employing shape-directed covalent self-assembly of rigid, disk-shaped building blocks having laterally predisposed reactive groups on their periphery. We demonstrate our strategy through a thiol-ene "click" reaction between (allyloxy)12CB[6], a cucurbit[6]uril (CB[6]) derivative with 12 laterally predisposed reactive alkene groups, and 1,2-ethanedithiol to synthesize a robust and readily transferable 2D polymer.
View Article and Find Full Text PDFWe investigated the in situ phase transition of the nanoscopic patterns on block copolymer thin films during nanoindentation by using a transmission electron microscope (TEM) with a specially designed nanoindenter. For the first time, we observed directly an in situ phase transition from lamellar microdomains to disordered states during the nanoindentation on a baroplastic polystyrene-block-poly(n-pentyl methacrylate) copolymer (PS-b-PnPMA) film. Through the in situ TEM observation, the mechanism of the nanoscopic pattern formation on a block copolymer thin film by indentation is fully understood.
View Article and Find Full Text PDFThe medium carbon (0.5 wt% C) steels containing various boron contents were studied to observe the distribution of boron using atom probe tomography and electron energy loss spectroscopy. APT revealed the segregation of boron atoms at retained austenite for 100 ppm boron added steels and the trapped carbon atoms at micro-twins for 50 ppm boron treated steels.
View Article and Find Full Text PDFA novel fabrication method of Co and Ni metal nanorods (NRs) without catalyst or template, based on the spontaneous formation of NRs during plasma-enhanced atomic layer deposition (PE-ALD) is developed. Pure Co and Ni NRs 9-10 nm in diameter are synthesized on SiO(2) and Si substrates by using metal-organic precursors and an NH(3) plasma mixed with a suitable amount of SiH(4) as a reactant. The lengths of the NRs are controlled on the nanometer scale by changing the number of PE-ALD growth cycles.
View Article and Find Full Text PDF