In the coming years, the use of microalgal biomass as agricultural biofertilizers has shown promising results. The use of wastewater as culture medium has resulted in the reduction of production costs, making microalgae-based fertilizers highly attractive for farmers. However, the occurrence of specific pollutants in wastewater, like pathogens, heavy metals and contaminants of emerging concern (CECs), such as pharmaceuticals and personal care products may pose a risk on human health.
View Article and Find Full Text PDFAlternatives to conventional inorganic fertilizers are needed to cope with the growing global population and contamination due to the production and use of those inorganic compounds. The recovery of nutrients from wastewater and organic wastes is a promising option to provide fertilization in a circular economy approach. In this context, microalgae-based systems are an alternative to conventional wastewater treatment systems, reducing the treatment costs and improving the sustainability of the process, while producing nutrient-rich microalgal biomass.
View Article and Find Full Text PDFWheat Grain Yield (GY) and quality are particularly susceptible to nitrogen (N) fertilizer management. However, in rain-fed Mediterranean environments, crop N requirements might be variable due to the effects of water availability on crop growth. Therefore, in-season crop N status assessment is needed in order to apply N fertilizer in a cost-effective way while reducing environmental impacts.
View Article and Find Full Text PDF