Publications by authors named "Gijsbert D A Werner"

Article Synopsis
  • * Analysis of data from over 1 million forest plots and thousands of tree species shows that wood density varies significantly by latitude, being up to 30% denser in tropical forests compared to boreal forests, and is influenced mainly by temperature and soil moisture.
  • * The research also finds that disturbances like human activity and fire alter wood density at local levels, affecting forest carbon stock estimates by up to 21%, emphasizing the importance of understanding environmental impacts on forest ecosystems.
View Article and Find Full Text PDF

The size-complexity hypothesis is a leading explanation for the evolution of complex life on earth. It predicts that in lineages that have undergone a major transition in organismality, larger numbers of lower-level subunits select for increased division of labour. Current data from multicellular organisms and social insects support a positive correlation between the number of cells and number of cell types and between colony size and the number of castes.

View Article and Find Full Text PDF

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system. Remote-sensing estimates to quantify carbon losses from global forests are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced and satellite-derived approaches to evaluate the scale of the global forest carbon potential outside agricultural and urban lands.

View Article and Find Full Text PDF

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records.

View Article and Find Full Text PDF

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies. Here, leveraging global tree databases, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity.

View Article and Find Full Text PDF

Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes.

View Article and Find Full Text PDF

Biological market theory provides a conceptual framework to analyse trade strategies in symbiotic partnerships. A key prediction of biological market theory is that individuals can influence resource value - meaning the amount a partner is willing to pay for it - by mediating where and when it is traded. The arbuscular mycorrhizal symbiosis, characterised by roots and fungi trading phosphorus and carbon, shows many features of a biological market.

View Article and Find Full Text PDF

Across the tree of life, hosts have evolved mechanisms to control and mediate interactions with symbiotic partners. We suggest that the evolution of physical structures that allow hosts to spatially separate symbionts, termed compartmentalization, is a common mechanism used by hosts. Such compartmentalization allows hosts to: (i) isolate symbionts and control their reproduction; (ii) reward cooperative symbionts and punish or stop interactions with non-cooperative symbionts; and (iii) reduce direct conflict among different symbionts strains in a single host.

View Article and Find Full Text PDF
Article Synopsis
  • Plant traits, which include various characteristics like morphology and physiology, play a crucial role in how plants interact with their environment and impact ecosystems, making them essential for research in areas like ecology, biodiversity, and environmental management.
  • The TRY database, established in 2007, has become a vital resource for global plant trait data, promoting open access and enabling researchers to identify and fill data gaps for better ecological modeling.
  • Although the TRY database provides extensive data, there are significant areas lacking consistent measurements, particularly for continuous traits that vary among individuals in their environments, presenting a major challenge that requires collaboration and coordinated efforts to address.
View Article and Find Full Text PDF

The world's ecosystems are characterized by an unequal distribution of resources [1]. Trade partnerships between organisms of different species-mutualisms-can help individuals cope with such resource inequality [2-4]. Trade allows individuals to exchange commodities they can provide at low cost for resources that are otherwise impossible or more difficult to access [5, 6].

View Article and Find Full Text PDF

Some animal groups associate with the same vertically transmitted microbial symbionts over extended periods of evolutionary time, punctuated by occasional symbiont switches to different microbial taxa. Here we test the oft-repeated suggestion that symbiont switches are linked with host diet changes, focusing on hemipteran insects of the suborder Auchenorrhyncha. These insects include the only animals that feed on plant xylem sap through the life cycle, as well as taxa that feed on phloem sap and plant parenchyma cells.

View Article and Find Full Text PDF

Cooperative interactions among species, termed mutualisms, have played a crucial role in the evolution of life on Earth. However, despite key potential benefits to partners, there are many cases in which two species cease to cooperate and mutualisms break down. What factors drive the evolutionary breakdown of mutualism? We examined the pathways toward breakdowns of the mutualism between plants and arbuscular mycorrhizal fungi.

View Article and Find Full Text PDF

The symbiosis between plants and root-colonizing arbuscular mycorrhizal (AM) fungi is one of the most ecologically important examples of interspecific cooperation in the world. AM fungi provide benefits to plants; in return plants allocate carbon resources to fungi, preferentially allocating more resources to higher-quality fungi. However, preferential allocations from plants to symbionts may vary with environmental context, particularly when resource availability affects the relative value of symbiotic services.

View Article and Find Full Text PDF

Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate.

View Article and Find Full Text PDF

Partner selection in the mycorrhizal symbiosis is thought to be a key factor stabilising the mutualism. Both plant hosts and mycorrhizal fungi have been shown to preferentially allocate resources to higher quality partners. This can help maintain underground cooperation, although it is likely that different plant species vary in the spatial precision with which they can select partners.

View Article and Find Full Text PDF

Priority effects - the impact of a species' arrival on subsequent community development - have been shown to influence species composition in many organisms. Whether priority effects among arbuscular mycorrhizal fungi (AMF) structure fungal root communities is not well understood. Here, we investigated whether priority effects influence the success of two closely related AMF species (Rhizophagus irregularis and Glomus aggregatum), hypothesizing that a resident AMF suppresses invader success, this effect is time-dependent and a resident will experience reduced growth when invaded.

View Article and Find Full Text PDF

Symbiotic associations occur in every habitat on earth, but we know very little about their evolutionary histories. Current models of trait evolution cannot adequately reconstruct the deep history of symbiotic innovation, because they assume homogenous evolutionary processes across millions of years. Here we use a recently developed, heterogeneous and quantitative phylogenetic framework to study the origin of the symbiosis between angiosperms and nitrogen-fixing (N2) bacterial symbionts housed in nodules.

View Article and Find Full Text PDF

Biological market theory has been used successfully to explain cooperative behavior in many animal species. Microbes also engage in cooperative behaviors, both with hosts and other microbes, that can be described in economic terms. However, a market approach is not traditionally used to analyze these interactions.

View Article and Find Full Text PDF

The gastropod Patella vulgata is abundant on rocky shores in Northern Europe and a significant grazer of intertidal algae. Here we report the application of Illumina sequencing to develop a transcriptome from the adult mantle tissue of P. vulgata.

View Article and Find Full Text PDF