Publications by authors named "Gigout A"

Objective: To preclinically characterize a mutant form of growth and differentiation factor 5, R399E, with reduced osteogenic properties as a potential disease-modifying osteoarthritis (OA) drug.

Methods: Cartilage, synovium, and meniscus samples from patients with OA were used to evaluate anabolic and antiinflammatory properties of R399E. In the rabbit joint instability model, 65 rabbits underwent transection of the anterior cruciate ligament plus partial meniscectomy.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a disease of the whole joint, with articular cartilage breakdown as a major characteristic. Inflammatory mediators, proteases, and oxidants produced by chondrocytes are known to be responsible for driving cartilage degradation. Nevertheless, the early pathogenic events are still unclear.

View Article and Find Full Text PDF

Sprifermin is a human recombinant fibroblast growth factor 18 (rhFGF18) in clinical development for knee osteoarthritis. Previously, we demonstrated that sprifermin exerts an anabolic effect on chondrocytes in 3D culture with cyclic but not permanent exposure. Here, we hypothesized that permanent exposure to sprifermin de-sensitizes the cells.

View Article and Find Full Text PDF

BMP2 stimulates bone formation and signals preferably through BMP receptor (BMPR) 1A, whereas GDF5 is a cartilage inducer and signals preferably through BMPR1B. Consequently, BMPR1A and BMPR1B are believed to be involved in bone and cartilage formation, respectively. However, their function is not yet fully clarified.

View Article and Find Full Text PDF

The growth and differentiation factor 5 (GDF-5) is known to play a key role in cartilage morphogenesis and homeostasis, and a single-nucleotide polymorphism in its promoter sequence was found to be associated with osteoarthritis (OA). In addition, GDF-5 was shown to promote extracellular matrix (ECM) production in healthy chondrocytes, to stimulate chondrogenesis of mesenchymal stem cells (MSCs) and to protect against OA progression in vivo. Therefore, GDF-5 appears to be a promising treatment for osteoarthritis.

View Article and Find Full Text PDF

Sprifermin, recombinant human fibroblast growth factor 18 (rhFGF18), induces cartilage regeneration in knees of patients with osteoarthritis (OA). We hypothesized that a temporal multiphasic process of extracellular matrix (ECM) degradation and formation underlie this effect. We aimed to characterize the temporal ECM remodeling of human knee OA articular cartilage in response to sprifermin treatment.

View Article and Find Full Text PDF

For cartilage repair or evaluation of new therapeutic approaches , the generation of functional cartilage tissue is of crucial importance and can only be achieved if the phenotype of the chondrocytes is preserved. Three-dimensional (3D) cell culture is broadly used for this purpose. However, adapting culture parameters like the oxygen tension or the osmolarity to their physiological values is often omitted.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a common disease worldwide with large unmet medical needs. To bring innovative treatments to OA patients, we at Merck have implemented a comprehensive strategy for drug candidate evaluation. We have a clear framework for decision-making in our preclinical pipeline, to design our clinical proof-of-concept trials for OA patients.

View Article and Find Full Text PDF

The environment surrounding chondrocytes changes drastically in osteoarthritis (OA). For instance, the osmolarity in cartilage (ranging from 350 to 460 mOsm in healthy tissue) decreases during the progression of OA, reaching 270 mOsm. The objective of this study was to evaluate how osmolarity influences human OA chondrocytes.

View Article and Find Full Text PDF

One possible approach to treat osteoarthritis (OA) is to counteract cartilage degeneration with anabolic compounds that stimulate chondrocyte proliferation and/or extracellular matrix (ECM) production. Several molecules including sprifermin (recombinant human fibroblast growth factor [FGF18]), insulin-like growth factor-1 [IGF1] and -2 [IGF2], C-type natriuretic peptide [CNP], and bone metamorphic protein 7 [BMP7] have been shown to have these characteristics both in vitro and in vivo. However, it is not known how these molecules compare each other regarding their effect on phenotype and stimulation of ECM production in primary chondrocytes.

View Article and Find Full Text PDF

Background: Sprifermin (recombinant human fibroblast growth factor 18) is in clinical development as a potential disease-modifying osteoarthritis drug (DMOAD). In vitro studies have shown that cartilage regenerative properties of sprifermin involve chondrocyte proliferation and extracellular matrix (ECM) production. To gain further insight into the process of sprifermin in the cartilage tissue, this study aimed at investigating the ECM turnover of articular cartilage explants in a longitudinal manner.

View Article and Find Full Text PDF

Objective: Fibroblast growth factor (FGF) 18 has been shown to increase cartilage volume when injected intra-articularly in animal models of osteoarthritis (OA) and in patients with knee OA (during clinical development of the recombinant human FGF18, sprifermin). However, the exact nature of this effect is still unknown. In this study, we aimed to investigate the effects of sprifermin at the cellular level.

View Article and Find Full Text PDF

Low seeding efficiency and poor cell retention under flow-induced shear stress limit the effectiveness of in vitro endothelialization strategies for small-diameter vascular grafts. Primary-amine-rich plasma-polymerized coatings (PPE:N) deposited using low- and atmospheric-pressure plasma discharges on PET and PTFE are evaluated for their ability to improve endothelial cells' kinetics and strength of attachment. PPE:N coatings increase cell adhesion and adhesion rate, spreading, focal adhesion, and resistance to flow-induced shear compared with bare and gelatin-coated PET and PTFE.

View Article and Find Full Text PDF

In many industrial applications, inadequate cell attachment can be a limitation, especially when serum-free media are used. Nitrogen-rich plasma-polymerised ethylene (PPE:N) exhibits high concentrations of polar groups that can help to promote the attachment of weakly adherent cell types. Tissue plasminogen activator-producing Chinese hamster ovary (CHO) cells, adapted to suspension, were grown in the presence PPE:N flakes and were found to adhere to them.

View Article and Find Full Text PDF

The study of chondrocyte biology requires culture conditions that maintain cell phenotype. Phenotype is rapidly lost in monolayer but is maintained in 3-dimensional scaffolds, which however, experience limited cell proliferation and limited mass transport. In this study, we cultured chondrocytes in aggregates in stirred spinner flask suspension cultures to control aggregate size and promote mass transport.

View Article and Find Full Text PDF

Isolated chondrocytes form aggregates in suspension culture that maintain chondrocyte phenotype in a physiological pericellular environment. The molecular mechanisms involved in chondrocyte aggregation have not been previously identified. Using this novel suspension culture system, we performed mRNA and protein expression analysis along with immunohistochemistry for potential cell adhesion molecules and extracellular matrix integrin ligands.

View Article and Find Full Text PDF

The surfactant Pluronic F-68 (PF-68) is widely used in large-scale mammalian cell culture to protect cells from shear stress that arises from agitation and gas sparging. Several studies suggested that PF-68 is incorporated into the cell plasma membrane and could enter the cells, but without providing any direct evidence. The current study has examined this question for two cell types, one of pharmaceutical interest (CHO cells) and the other of biomedical interest (chondrocytes or cartilage cells).

View Article and Find Full Text PDF

Objective: Extracellular calcium influences chondrocyte differentiation and synthesis of extracellular matrix. Previously, calcium concentrations ranging from 0.1 mM to 2 mM have been used in vitro and these studies indicated that low calcium concentrations were generally favorable for chondrocyte culture.

View Article and Find Full Text PDF