Purpose: To standardize T -weighted images from clinical Turbo Spin Echo (TSE) scans by generating corresponding T maps with the goal of removing scanner- and/or protocol-specific heterogeneity.
Methods: The T map is estimated by minimizing an objective function containing a data fidelity term in a Virtual Conjugate Coils (VCC) framework, where the signal evolution model is expressed as a linear constraint. The objective function is minimized by Projected Gradient Descent (PGD).
Objective: To improve image quality in highly accelerated parameter mapping by incorporating a linear constraint that relates consecutive images.
Approach: In multi-echo T or T mapping, scan time is often shortened by acquiring undersampled but complementary measures of k-space at each TE or TI. However, residual undersampling artifacts from the individual images can then degrade the quality of the final parameter maps.
Purpose: To study the additional value of FRONSAC encoding in 2D and 3D wave sequences, implementing a simple strategy to trajectory mapping for FRONSAC encoding gradients.
Theory And Methods: The nonlinear gradient trajectory for each voxel was estimated by exploiting the sparsity of the point spread function in the frequency domain. Simulations and in-vivo experiments were used to analyze the performance of combinations of wave and FRONSAC encoding.
Am J Physiol Heart Circ Physiol
May 2024
Peripheral artery disease (PAD) is a common vascular disease that primarily affects the lower limbs and is defined by the constriction or blockage of peripheral arteries and may involve microvascular dysfunction and tissue injury. Patients with diabetes have more prominent disease of microcirculation and develop peripheral neuropathy, autonomic dysfunction, and medial vascular calcification. Early and accurate diagnosis of PAD and disease characterization are essential for personalized management and therapy planning.
View Article and Find Full Text PDFEliminating conventional pulsed B-gradient coils for magnetic resonance imaging (MRI) can significantly reduce the cost of and increase access to these devices. Phase shifts induced by the Bloch-Siegert shift effect have been proposed as a means for gradient-free, RF spatial encoding for low-field MR imaging. However, nonlinear phasor patterns like those generated from loop coils have not been systematically studied in the context of 2D spatial encoding.
View Article and Find Full Text PDFPurpose: Diastolic function evaluation requires estimates of early and late diastolic mitral filling velocities (E and A) and of mitral annulus tissue velocity (e'). We aimed to develop an MRI method for simultaneous all-in-one diastolic function evaluation in a single scan by generating a 2D phase-contrast (PC) sequence with balanced steady-state free precession (bSSFP) contrast (PC-SSFP). E and A could then be measured with PC, and e' estimated by valve tracking on the magnitude images, using an established deep learning framework.
View Article and Find Full Text PDFPurpose: This study extends the Fast ROtary Nonlinear Spatial ACquisition (FRONSAC) method to include 3D acquisitions and reconstructions. It uses a transform domain reconstruction which is needed to make 3D reconstructions practical and provides new insights into how parallel imaging performance is enhanced by FRONSAC encoding.
Methods: This work developed the first examples of FRONSAC incorporated into a 3D acquisition.
Rationale And Objectives: MR images can be challenging for machine learning and other large-scale analyses because most clinical images, for example, T-weighted (Tw) images, reflect not only the biologically relevant T of tissue but also hardware and acquisition parameters that vary from site to site. Quantitative T mapping avoids these confounds because it quantitatively isolates the biological parameter of interest, thus representing a universal standardization across sites. However, efforts to incorporate quantitative mapping sequences into routine clinical practice have seen slow adoption.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) is a powerful noninvasive diagnostic tool with superior soft tissue contrast. However, access to MRI is limited since current systems depend on homogeneous, high field strength main magnets (B0-fields), with strong switchable gradients which are expensive to install and maintain. In this work we propose a new approach to MRI where imaging is performed in an inhomogeneous field using radiofrequency spatial encoding, thereby eliminating the need for uniform B0-fields and conventional cylindrical gradient coils.
View Article and Find Full Text PDFPurpose: MRI studies in human subjects often require multiple scanning sessions/visits. Changes in a subject's head position across sessions result in different alignment between brain tissues and the magnetic field which leads to changes in magnetic susceptibility. These changes can have considerable impacts on acquired signals.
View Article and Find Full Text PDFSince recovery time of the RF coil is long at low field MRI, the rising and the ring-down times of the square pulse are also long, which means the applied sinc pulse can easily be distorted from the changing amplitude. However, both the rising time and ring-down time can be calculated using Q-factor. Using this information, an RF square pulse were compensated by appending two square pulses before and after the RF pulse.
View Article and Find Full Text PDFMagnetic resonance is a key imaging tool for the detection of prostate cancer; however, better tools focusing on cancer specificity are required to distinguish benign from cancerous regions. We found higher expression of claudin-3 (CLDN-3) and -4 (CLDN-4) in higher grade than lower-grade human prostate cancer biopsies (n = 174), leading to the design of functionalized nanoparticles (NPs) with a non-toxic truncated version of the natural ligand Clostridium perfringens enterotoxin (C-CPE) that has a strong binding affinity to Cldn-3 and Cldn-4 receptors. We developed a first-of-its-type, C-CPE-NP-based MRI detection tool in a prostate tumor-bearing mouse model.
View Article and Find Full Text PDFPurpose: Prostate cancer remains the second leading cancer killer of men, yet it is also a disease with a high rate of overtreatment. Diffusion-weighted imaging (DWI) has shown promise as a reliable, grade-sensitive imaging method, but it is limited by low image quality. Currently, DWI quality image is directly related to low gradient amplitudes, since weak gradients must be compensated with long echo times.
View Article and Find Full Text PDFPurpose: To investigate an ECG-gated dynamic-flip-angle BOLD sequence with improved robustness against cardiogenic noise in resting-state fMRI.
Methods: ECG-gating minimizes the cardiogenic noise but introduces T -dependent signal variation, which is minimized by combination of a dynamic-flip-angle technique and retrospective nuisance signal regression (NSR) using signals of white matter, CSF, and global average. The technique was studied with simulations in a wide range of T and B fields and phantom imaging with pre-programmed TR variations.
Previous work has highlighted the complicated and distinctive dynamics that set signal evolution during a train of spin echoes, especially with nonuniform echo spacing applied to complex molecules like fats. The work presented here regards those signal patterns as codes that can be used as a contrast mechanism, capable of distinguishing mixtures of molecules with an imaging sequence, sidestepping many challenges of spectroscopy. For particular arrays of echo spacings, non-monotonic and distinctive signal evolution can be enhanced to improve contrast between target species.
View Article and Find Full Text PDFFast ROtary Nonlinear Spatial ACquisition (FRONSAC) was recently introduced as a new strategy that applies nonlinear gradients as a small perturbation to improve image quality in highly undersampled MRI. In addition to experimentally showing the previously simulated improvement to image quality, this work introduces the insight that Cartesian-FRONSAC retains many desirable features of Cartesian imaging. Cartesian-FRONSAC preserves the existing linear gradient waveforms of the Cartesian sequence while adding oscillating nonlinear gradient waveforms.
View Article and Find Full Text PDFPurpose: While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications.
View Article and Find Full Text PDFPurpose: Turbo spin echo (TSE) imaging reduces imaging time by acquiring multiple echoes per repetition (TR), requiring fewer TRs. O-space can also require fewer TRs by using a combination of nonlinear magnetic gradient fields and surface coil arrays. Although to date, O-space has only been demonstrated for gradient echo imaging, it is valuable to combine these two techniques.
View Article and Find Full Text PDFPurpose: Nonlinear spatial encoding magnetic fields (SEMs) have been studied to reconstruct images from a minimum number of echoes. Previous work has also explored single shot trajectories in nonlinear SEMs. However, the search continues for optimal schemes that apply nonlinear SEMs to improve spatial encoding efficiency and image quality.
View Article and Find Full Text PDFPurpose: Nonlinear spatial encoding magnetic (SEM) field strategies such as O-space imaging have previously reported dispersed artifacts during accelerated scans. Compressed sensing (CS) has shown a sparsity-promoting convex program allows image reconstruction from a reduced data set when using the appropriate sampling. The development of a pseudo-random center placement (CP) O-space CS approach optimizes incoherence through SEM field modulation to reconstruct an image with reduced error.
View Article and Find Full Text PDFPurpose: To investigate algebraic reconstruction technique (ART) for parallel imaging reconstruction of radial data, applied to accelerated cardiac cine.
Methods: A graphics processing unit (GPU)-accelerated ART reconstruction was implemented and applied to simulations, point spread functions and in 12 subjects imaged with radial cardiac cine acquisitions. Cine images were reconstructed with radial ART at multiple undersampling levels (192 Nr × Np = 96 to 16).
Purpose: Previous nonlinear gradient research has focused on trajectories that reconstruct images with a minimum number of echoes. Here we describe sequences where the nonlinear gradients vary in time to acquire the image in a single readout. The readout is designed to be very smooth so that it can be compressed to minimal time without violating peripheral nerve stimulation limits, yielding an image from a single 4 ms echo.
View Article and Find Full Text PDFPurpose: Nonlinear gradient encoding methods, such as O-Space imaging, have been shown to provide good images from very few echoes. Acquiring data in a train of spin or gradient echoes is a very flexible way to further speed acquisition time. However, combining these strategies presents significant challenges, both in terms of the contrast and artifacts.
View Article and Find Full Text PDFConcepts Magn Reson Part A Bridg Educ Res
September 2012
Sequences that encode the spatial information of an object using nonlinear gradient fields are a new frontier in MRI, with potential to provide lower peripheral nerve stimulation, windowed fields of view, tailored spatially-varying resolution, curved slices that mirror physiological geometry, and, most importantly, very fast parallel imaging with multichannel coils. The acceleration for multichannel images is generally explained by the fact that curvilinear gradient isocontours better complement the azimuthal spatial encoding provided by typical receiver arrays. However, the details of this complementarity have been more difficult to specify.
View Article and Find Full Text PDF