Publications by authors named "Gifty A Dominah"

Amyloid is a systemic disease characterized by extracellular deposition of misfolded protein. Gastrointestinal and peritoneal deposition of light chain (AL) amyloid is an under-recognized manifestation of this systemic disease, usually as a late sequela. Here we present a case of recently diagnosed AL peritoneal amyloid that presented in the context of recurrent, acute onset abdominal discomfort and was found to have bowel obstruction complicated by perforation in the setting of AL-mediated gastrointestinal tract infiltration and dysmotility.

View Article and Find Full Text PDF
Article Synopsis
  • Preclinical models are crucial for studying the immune response to gliomas, and this study focused on comparing fluorescently transfected GL261 murine glioma cells with non-fluorescent versions.
  • The research involved implanting mice with different GL261 cell types and assessing their survival rates and immune responses through cytokine profiling.
  • Results showed that mice with non-fluorescent GL261 cells had shorter median survival compared to those with fluorescent GL261-Luc2 cells, which also exhibited increased inflammatory cytokines, indicating a stronger anti-tumor immune response.
View Article and Find Full Text PDF

Immunotherapy is a promising new therapeutic field that has demonstrated significant benefits in many solid-tumor malignancies, such as metastatic melanoma and non-small cell lung cancer. However, only a subset of these patients responds to treatment. Glioblastoma (GBM) is the most common malignant primary brain tumor with a poor prognosis of 14.

View Article and Find Full Text PDF

A common hallmark of amyloids is their resistance to an array of proteases, highlighting the difficulty in degrading these disease-related aggregated proteinaceous materials. Here, we report on the potent activity of cathepsin L (CtsL), a lysosomal protease that proteolyzes the Parkinson's disease-related amyloid formed by α-synuclein (α-syn). Using liquid chromatography with mass spectrometry and transmission electron microscopy, an elegant mechanism is revealed on the residue and ultrastructural level, respectively.

View Article and Find Full Text PDF

We hypothesized that expression of mutant Huntingtin (HTT) would modulate the neurotoxicity of the commonly used organophosphate insecticide, chlorpyrifos (CPF), revealing cellular mechanisms underlying neurodegeneration. Using a mouse striatal cell model of HD, we report that mutant HD cells are more susceptible to CPF-induced cytotoxicity as compared to wild-type. This CPF-induced cytotoxicity caused increased production of reactive oxygen species, reduced glutathione levels, decreased superoxide dismutase activity, and increased malondialdehyde levels in mutant HD cells relative to wild-type.

View Article and Find Full Text PDF