Publications by authors named "Giet R"

The diverse roles of the dynein motor in shaping microtubule networks and cargo transport complicate in vivo analysis of its functions significantly. To address this issue, we have generated a series of missense mutations in Drosophila Dynein heavy chain. We show that mutations associated with human neurological disease cause a range of defects, including impaired cargo trafficking in neurons.

View Article and Find Full Text PDF

Cell division is a conserved process among eukaryotes. It is designed to segregate chromosomes into future daughter cells and involves a complex rearrangement of the cytoskeleton, including microtubules and actin filaments. An additional level of complexity is present in asymmetric dividing stem cells because cytoskeleton elements are also regulated by polarity cues.

View Article and Find Full Text PDF

The cytoplasmic dynein-1 (dynein) motor organizes cells by shaping microtubule networks and moving a large variety of cargoes along them. However, dynein's diverse roles complicate studies of its functions significantly. To address this issue, we have used gene editing to generate a series of missense mutations in Dynein heavy chain (Dhc).

View Article and Find Full Text PDF

Sister chromatid cohesion is a multi-step process implemented throughout the cell cycle to ensure the correct transmission of chromosomes to daughter cells. Although cohesion establishment and mitotic cohesion dissolution have been extensively explored, the regulation of cohesin loading is still poorly understood. Here, we report that the methyltransferase NSD3 is essential for mitotic sister chromatid cohesion before mitosis entry.

View Article and Find Full Text PDF

Drosophila neural stem cells (NSCs) divide asymmetrically to generate siblings of different sizes. This model system has proved helpful in deciphering the contribution of polarity cues and the mitotic spindle in asymmetric cell division. Here, we describe a technique we developed to flatten cultured Drosophila brain explants to accurately image the cytoskeleton in live NCSs.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how asymmetric division of stem cells is crucial for keeping tissues balanced and involves precise chromosome separation during cell division.
  • Researchers found that Polo kinase levels influence the timing of Cyclin B degradation, which is important for mitosis, and this process is regulated by other kinases like Aurora A and Aurora B.
  • The findings suggest that the interaction between Aurora and Polo kinases helps in maintaining the balance of neural stem cells in Drosophila, which is important for normal brain function and preventing tumor growth.
View Article and Find Full Text PDF

Proper mitotic spindle orientation depends on the correct anchorage of astral microtubules to the cortex. It relies on the remodeling of the cell cortex, a process not fully understood. Annexin A2 (Anx2; also known as ANXA2) is a protein known to be involved in cortical domain remodeling.

View Article and Find Full Text PDF

Neuroblast division is characterized by asymmetric positioning of the cleavage furrow, resulting in a large difference in size between the future daughter cells. In animal cells, furrow placement and assembly are governed by centralspindlin that accumulates at the equatorial cell cortex of the future cleavage site and at the spindle midzone. In neuroblasts, these two centralspindlin populations are spatially and temporally separated.

View Article and Find Full Text PDF

Proper assembly of mitotic spindles requires microtubule nucleation not only at the centrosomes but also around chromatin. In this study, we found that the Drosophila tubulin-specific chaperone dTBCE is required for the enrichment of tubulin in the nuclear space after nuclear envelope breakdown and for subsequent promotion of spindle microtubule nucleation. These events depend on the CAP-Gly motif found in dTBCE and are regulated by Ran and lamin proteins.

View Article and Find Full Text PDF
Article Synopsis
  • A new chemical called 1 works against the growth of cells that can cause problems, like cancer.
  • It affects how the tiny structures inside cells, called microtubules, grow and stop the cells from dividing properly.
  • This suggests that 1 could be a special medicine to help stop cell growth in both humans and other animals.
View Article and Find Full Text PDF

Ensconsin (also known as MAP7) controls spindle length, centrosome separation in brain neuroblasts (NBs) and asymmetric transport in oocytes. The control of spindle length by Ensconsin is Kinesin-1 independent but centrosome separation and oocyte transport require targeting of Kinesin-1 to microtubules by Ensconsin. However, the molecular mechanism used for this targeting remains unclear.

View Article and Find Full Text PDF

Accurate chromosome segregation requires the perfect spatiotemporal rearrangement of the cellular cytoskeleton. Isolated more than two decades ago from , Aurora A is a widespread protein kinase that plays key roles during cell division. Numerous studies have described the localisation of Aurora A at centrosomes, the mitotic spindle, and, more recently, at mitotic centromeres.

View Article and Find Full Text PDF

The consumption of psychotropic drugs in elderly people remains a concern in France, including in nursing homes. A comparative analysis of prescriptions for psychotropic medication in nursing homes in 2013 and 2015 based on the computer system of the French national health insurance scheme shows a significant reduction in the prescribing of these medications. Example of a nursing home in Dijon.

View Article and Find Full Text PDF

The meiotic spindle is formed without centrosomes in a large volume of oocytes. Local activation of crucial spindle proteins around chromosomes is important for formation and maintenance of a bipolar spindle in oocytes. We found that phosphodocking 14-3-3 proteins stabilize spindle bipolarity in oocytes.

View Article and Find Full Text PDF

Loss of Aurora A in Drosophila neuroblasts promotes loss of cell fate, leading to brain tumors. We showed that these tumor stem cells are delayed during mitosis and efficiently segregate their chromosomes even without the spindle assembly checkpoint. Here, we discuss the possible relevance of our results to human cancers.

View Article and Find Full Text PDF

Tissue homeostasis requires accurate control of cell proliferation, differentiation and chromosome segregation. Drosophila sas-4 and aurA mutants present brain tumours with extra neuroblasts (NBs), defective mitotic spindle assembly and delayed mitosis due to activation of the spindle assembly checkpoint (SAC). Here we inactivate the SAC in aurA and sas-4 mutants to determine whether the generation of aneuploidy compromises NB proliferation.

View Article and Find Full Text PDF

Holoprosencephaly (HPE) is a frequent congenital malformation of the brain characterized by impaired forebrain cleavage and midline facial anomalies. Heterozygous mutations in 14 genes have been identified in HPE patients that account for only 30% of HPE cases, suggesting the existence of other HPE genes. Data from homozygosity mapping and whole-exome sequencing in a consanguineous Turkish family were combined to identify a homozygous missense mutation (c.

View Article and Find Full Text PDF

The mitotic spindle is crucial to achieve segregation of sister chromatids. To identify new mitotic spindle assembly regulators, we isolated 855 microtubule-associated proteins (MAPs) from Drosophila melanogaster mitotic or interphasic embryos. Using RNAi, we screened 96 poorly characterized genes in the Drosophila central nervous system to establish their possible role during spindle assembly.

View Article and Find Full Text PDF

The cyclin-dependent kinase CDK11(p58) is specifically expressed at G2/M phase. CDK11(p58) depletion leads to different cell cycle defects such as mitotic arrest, failure in centriole duplication and centrosome maturation, and premature sister chromatid separation. We report that upon CDK11 depletion, loss of sister chromatid cohesion occurs during mitosis but not during G2 phase.

View Article and Find Full Text PDF

MNK1 is a serine/threonine kinase identified as a target for MAP kinase pathways. Using chemical drug, kinase-dead expression or knockdown by RNA interference, we show that inhibition of MNK1 induces the formation of multinucleated cells, which can be rescued by expressing a form of MNK1 that is resistant to RNA interference. We found that the active human form of MNK1 localises to centrosomes, spindle microtubules and the midbody.

View Article and Find Full Text PDF

Background: CDK11(p58) is a mitotic protein kinase, which has been shown to be required for different mitotic events such as centrosome maturation, chromatid cohesion and cytokinesis.

Methodology/principal Findings: In addition to these previously described roles, our study shows that CDK11(p58) inhibition induces a failure in the centriole duplication process in different human cell lines. We propose that this effect is mediated by the defective centrosomal recruitment of proteins at the onset of mitosis.

View Article and Find Full Text PDF

Aurora A is a spindle pole-associated protein kinase required for mitotic spindle assembly and chromosome segregation. In this study, we show that Drosophila melanogaster aurora A phosphorylates the dynactin subunit p150(glued) on sites required for its association with the mitotic spindle. Dynactin strongly accumulates on microtubules during prophase but disappears as soon as the nuclear envelope breaks down, suggesting that its spindle localization is tightly regulated.

View Article and Find Full Text PDF

Centrosomes are essential protagonists during cell division through microtubule nucleation and spindle formation which are key to the harmonious distribution of sister chromatids in the two daughter cells. However, during the past decade, a wealth of new observations has extended their role beyond mitosis, particularly in the asymmetrical partition of cell fate determinants. Remarkably, asymmetric centrosome inheritance per se, through the segregation of differently aged mother -centrioles, seems to regulate the differential behaviour of daughter cells, in part through asynchronous expression of primary cilia, governing the response to environmental signals.

View Article and Find Full Text PDF

Reversible protein phosphorylation has an essential role during pre-mRNA splicing. Here we identify two previously unidentified phosphoproteins in the human spliceosomal B complex, namely the pre-mRNA processing factors PRP6 and PRP31, both components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP). We provide evidence that PRP6 and PRP31 are directly phosphorylated by human PRP4 kinase (PRP4K) concomitant with their incorporation into B complexes.

View Article and Find Full Text PDF

The spindle checkpoint delays anaphase onset until every chromosome kinetochore has been efficiently captured by the mitotic spindle microtubules. In this study, we report that the human pre-messenger RNA processing 4 (PRP4) protein kinase associates with kinetochores during mitosis. PRP4 depletion by RNA interference induces mitotic acceleration.

View Article and Find Full Text PDF