Ectromelia virus (ECTV) is a causative agent of mousepox. It provides a suitable model for studying the immunobiology of orthopoxviruses, including their interaction with the host cell cytoskeleton. As professional antigen-presenting cells, dendritic cells (DCs) control the pericellular environment, capture antigens, and present them to T lymphocytes after migration to secondary lymphoid organs.
View Article and Find Full Text PDFThe eradication of smallpox was an enormous achievement due to the global vaccination program launched by World Health Organization. The cessation of the vaccination program led to steadily declining herd immunity against smallpox, causing a health emergency of global concern. The smallpox vaccines induced strong, humoral, and cell-mediated immune responses, protecting for decades after immunization, not only against smallpox but also against other zoonotic orthopoxviruses that now represent a significant threat to public health.
View Article and Find Full Text PDFThe gastrointestinal tract, which is constantly exposed to a multitude of stimuli, is considered responsible for maintaining the homeostasis of the host. It is inhabited by billions of microorganisms, the gut microbiota, which form a mutualistic relationship with the host. Although the microbiota is generally recognized as beneficial, at the same time, together with pathogens, they are a permanent threat to the host.
View Article and Find Full Text PDFTLR3 provides immediate type I IFN response following entry of stimulatory PAMPs into the CNS, as it is in HSV infection. The receptor plays a vital role in astrocytes, contributing to rapid infection sensing and suppression of viral replication, precluding the spread of virus beyond neurons. The route of TLR3 mobilization culminating in the receptor activation remains unexplained.
View Article and Find Full Text PDFMitochondria are multitasking organelles that play a central role in energy production, survival and primary host defense against viral infections. Therefore, viruses target mitochondria dynamics and functions to benefit their replication and morphogenetic processes. We endeavor to understand the role of mitochondria during infection of ectromelia virus (ECTV), hence our investigations on mitochondria-related genes in non-immune (L929 fibroblasts) and immune (RAW 264.
View Article and Find Full Text PDFEctromelia virus (ECTV), an orthopoxvirus, undergoes productive replication in conventional dendritic cells (cDCs), resulting in the inhibition of their innate and adaptive immune functions. ECTV replication rate in cDCs is increased due to downregulation of the expression of cathepsins - cystein proteases that orchestrate several steps during DC maturation. Therefore, this study was aimed to determine if downregulation of cathepsins, such as B, L or S, disrupts cDC capacity to induce activating signals in T cells or whether infection of cDCs with ECTV further weakens their functions as antigen-presenting cells.
View Article and Find Full Text PDFBacteria from the species are a part of the biota of skin and mucous membranes of the upper respiratory, gastrointestinal, or urogenital tracts of animals, but also, opportunistic pathogens. causes a variety of purulent infections, such as metritis, mastitis, pneumonia, and abscesses, which, in livestock breeding, generate significant economic losses. Although this species has been known for a long time, many questions concerning the mechanisms of infection pathogenesis, as well as reservoirs and routes of transmission of bacteria, remain poorly understood.
View Article and Find Full Text PDFToll-like receptors (TLRs) sense the presence of pathogen-associated molecular patterns. Nevertheless, the mechanisms modulating TLR-triggered innate immune responses are not yet fully understood. Complex regulatory systems exist to appropriately direct immune responses against foreign or self-nucleic acids, and a critical role of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), endosomal sorting complex required for transportation-0 (ESCRT-0) subunit, has recently been implicated in the endolysosomal transportation of TLR7 and TLR9.
View Article and Find Full Text PDFBackground: Cathepsins are a group of endosomal proteases present in many cells including dendritic cells (DCs). The activity of cathepsins is regulated by their endogenous inhibitors - cystatins. Cathepsins are crucial to antigen processing during viral and bacterial infections, and as such are a prerequisite to antigen presentation in the context of major histocompatibility complex class I and II molecules.
View Article and Find Full Text PDFEctromelia virus (ECTV) is the etiological agent of mousepox, an acute and systemic disease with high mortality rates in susceptible strains of mice. Resistance and susceptibility to mousepox are triggered by the dichotomous T-helper (Th) immune response generated in infected animals, with strong protective Th1 or nonprotective Th2 profile, respectively. Th1/Th2 balance is influenced by dendritic cells (DCs), which were shown to differ in their ability to polarize naïve CD4 T cells in different mouse strains.
View Article and Find Full Text PDFThe aim of the study was to evaluate the influence of ectromelia virus (ECTV) infection on actin cytoskeleton rearrangement in immune cells, such as macrophages and dendritic cells (DCs). Using scanning electron and fluorescence microscopy analysis we observed the presence of long actin-based cellular extensions, formed by both types of immune cells at later stages of infection with ECTV. Such extensions contained straight tubulin filaments and numerous punctuate mitochondria.
View Article and Find Full Text PDFEctromelia virus (ECTV) is an orthopoxvirus that productively replicates in dendritic cells (DCs), but its influence on the microtubule (MT) cytoskeleton in DCs is not known. Here, we show that ECTV infection of primary murine granulocyte-macrophage colony stimulating factor-derived bone marrow cells (GM-BM) downregulates numerous genes engaged in MT cytoskeleton organization and dynamics. In infected cells, the MT cytoskeleton undergoes dramatic rearrangement and relaxation, accompanied by disappearance of the microtubule organizing centre (MTOC) and increased acetylation and stabilization of MTs, which are exploited by progeny virions for intracellular transport.
View Article and Find Full Text PDFMitochondria are multifunctional organelles that participate in numerous processes in response to viral infection, but they are also a target for viruses. The aim of this study was to define subcellular events leading to alterations in mitochondrial morphology and function during infection with ectromelia virus (ECTV). We used two different cell lines and a combination of immunofluorescence techniques, confocal and electron microscopy, and flow cytometry to address subcellular changes following infection.
View Article and Find Full Text PDFEctromelia virus (ECTV) belongs to the genus of the family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections.
View Article and Find Full Text PDFEctromelia virus (ECTV) is an orthopoxvirus responsible for mousepox, a lethal disease of certain strains of mice that is similar to smallpox in humans, caused by variola virus (VARV). ECTV, similar to VARV, exhibits a narrow host range and has co-evolved with its natural host. Consequently, ECTV employs sophisticated and host-specific strategies to control the immune cells that are important for induction of antiviral immune response.
View Article and Find Full Text PDFEctromelia virus (ECTV, the causative agent of mousepox), which represents the same genus as variola virus (VARV, the agent responsible for smallpox in humans), has served for years as a model virus for studying mechanisms of poxvirus-induced disease. Despite increasing knowledge on the interaction between ECTV and its natural host-the mouse-surprisingly, still little is known about the cell biology of ECTV infection. Because pathogen interaction with the cytoskeleton is still a growing area of research in the virus-host cell interplay, the aim of the present study was to evaluate the consequences of ECTV infection on the cytoskeleton in a murine fibroblast cell line.
View Article and Find Full Text PDFEradication of smallpox has led to cessation of vaccination programs. This has rendered the human population increasingly susceptible not only to variola virus infection but also to infections with other representatives of Poxviridae family that cause zoonotic variola-like diseases. Thus, new approaches for designing improved vaccine against smallpox are required.
View Article and Find Full Text PDFTh17 cells are a relatively newly discovered subpopulation of helper CD4+ T lymphocytes. It has been shown that these cells may contribute to tissue damage during certain inflammatory and autoimmune diseases and also play an important role in antitumor and antimicrobial, particularly antibacterial, immunity. Bacteria stimulate the Th17 response through several Toll-like (TLR), NOD-like (NLR) and C-type lectin (CLR) receptors.
View Article and Find Full Text PDFDuring mousepox in resistant (C57BL/6) or susceptible (BALB/c) strains of mice, stimulation of Th1 or Th2 cytokine immune response, respectively, is observed. Because mechanisms of different polarization of T cells remain elusive, in this study, we quantitatively assessed the phenotype of antigen-presenting cells (APCs) involved in ectromelia virus (ECTV) antigen presentation and cluster formation with effector cells in secondary lymphoid organs of BALB/c and C57BL/6 mice. We showed that both strains of mice display similar dynamics and kinetics of viral antigen presentation by CD11c(+) , CD11b(+) , and CD19(+) cells.
View Article and Find Full Text PDFBackground: The purpose of the study was to evaluate synthesis of IFN-γ, IL-2, TNF-α (Th1/Tc1) and IL-4 (Th2/Tc2) at CD4+ T and CD8+ T cell level in BALB/c and C57BL/6 mice in the course of infection with ectromelia virus Moscow strain (ECTV-MOS).
Material/methods: Synthesis of IFN-γ, IL-2, TNF-α and IL-4 in CD4+ T and CD8+ T cells in draining lymph nodes (DLNs) and spleens of BALB/c and C57BL/6 mice was detected by intracellular staining and flow cytometry analysis.
Results: Our results showed an increase in percentage of IFN-γ -synthesizing CD8+ T cells only in DLNs and spleens of C57BL/6 mice at the early stages of infection.
Postepy Hig Med Dosw (Online)
May 2011
The mammalian immune system has evolved several mechanisms that allow bacterial and viral infections to be successfully fought. Animal cells are able to recognize viral infection and this recognition is dependent on the presence of intracellular sensors that instantly identify danger signals and initiate signal cascades leading to an effective antiviral response. Several host proteins have been identified as intracellular sensors, namely: Toll-like receptors, RIG-I-like receptors, AIM2-like receptors and DAI, DNA-dependent activator of IFN regulatory factor.
View Article and Find Full Text PDF