Background: Type 2 diabetes (T2D) has been linked to changes in DNA methylation levels, which can, in turn, alter transcriptional activity. However, most studies for epigenome-wide associations between T2D and DNA methylation comes from cross-sectional design. Few large-scale investigations have explored these associations longitudinally over multiple time-points.
View Article and Find Full Text PDFUnderstanding the genetics of kidney function decline, or trait change in general, is hampered by scarce longitudinal data for GWAS (longGWAS) and uncertainty about how to analyze such data. We use longitudinal UK Biobank data for creatinine-based estimated glomerular filtration rate from 348,275 individuals to search for genetic variants associated with eGFR-decline. This search was performed both among 595 variants previously associated with eGFR in cross-sectional GWAS and genome-wide.
View Article and Find Full Text PDFAims: A data-driven cluster analysis in a cohort of European individuals with type 2 diabetes (T2D) has previously identified four subgroups based on clinical characteristics. In the current study, we performed a comprehensive statistical assessment to (1) replicate the above-mentioned original clusters; (2) derive de novo T2D subphenotypes in the Kooperative Gesundheitsforschung in der Region Augsburg (KORA) cohort and (3) describe underlying genetic risk and diabetes complications.
Methods: We used data from n = 301 individuals with T2D from KORA FF4 study (Southern Germany).
Background: Protein biomarkers may contribute to the identification of vulnerable subgroups for premature mortality. This study aimed to investigate the association of plasma proteins with all-cause and cause-specific mortality among individuals with and without baseline type 2 diabetes (T2D) and evaluate their impact on the prediction of all-cause mortality in two prospective Cooperative Health Research in the Region of Augsburg (KORA) studies.
Methods: The discovery cohort comprised 1545 participants (median follow-up 15.
Despite extensive research on 5-methylcytosine (5mC) in relation to smoking, there has been limited exploration into the interaction between smoking and 5-hydroxymethylcytosine (5hmC). In this study, total DNA methylation (5mC+5hmC), true DNA methylation (5mC) and hydroxymethylation (5hmC) levels were profiled utilizing conventional bisulphite (BS) and oxidative bisulphite (oxBS) treatment, measured with the Illumina Infinium Methylation EPIC BeadChip. An epigenome-wide association study (EWAS) of 5mC+5hmC methylation revealed a total of 38,575 differentially methylated positions (DMPs) and 2023 differentially methylated regions (DMRs) associated with current smoking, along with 82 DMPs and 76 DMRs associated with former smoking (FDR-adjusted < 0.
View Article and Find Full Text PDFBackground: Metformin and sodium-glucose-cotransporter-2 inhibitors (SGLT2i) are cornerstone therapies for managing hyperglycemia in diabetes. However, their detailed impacts on metabolic processes, particularly within the citric acid (TCA) cycle and its anaplerotic pathways, remain unclear. This study investigates the tissue-specific metabolic effects of metformin, both as a monotherapy and in combination with SGLT2i, on the TCA cycle and associated anaplerotic reactions in both mice and humans.
View Article and Find Full Text PDFBackground And Aims: Atherosclerosis is the main cause of stroke and coronary heart disease (CHD), both leading mortality causes worldwide. Proteomics, as a high-throughput method, could provide helpful insights into the pathological mechanisms underlying atherosclerosis. In this study, we characterized the associations of plasma protein levels with CHD and with carotid intima-media thickness (CIMT), as a surrogate measure of atherosclerosis.
View Article and Find Full Text PDFAccurate risk prediction for myocardial infarction (MI) is crucial for preventive strategies, given its significant impact on global mortality and morbidity. Here, we propose a novel deep-learning approach to enhance the prediction of incident MI cases by incorporating metabolomics alongside clinical risk factors. We utilized data from the KORA cohort, including the baseline S4 and follow-up F4 studies, consisting of 1454 participants without prior history of MI.
View Article and Find Full Text PDFBackground: Dietary intake of n-3 polyunsaturated fatty acids (PUFA) may have a protective effect on the development of cardiovascular diseases, diabetes, depression and cancer, while a high intake of n-6 PUFA was often reported to be associated with inflammation-related traits. The effect of PUFAs on health outcomes might be mediated by DNA methylation (DNAm). The aim of our study is to identify the impact of PUFA intake on DNAm in the Cooperative Health Research in the Region of Augsburg (KORA) FF4 cohort and the Leiden Longevity Study (LLS).
View Article and Find Full Text PDFBackground: The dicarbonyl compounds methylglyoxal (MG), glyoxal (GO) and 3-deoxyglucosone (3-DG) have been linked to various diseases. However, disease-independent phenotypic and genotypic association studies with phenome-wide and genome-wide reach, respectively, have not been provided.
Methods: MG, GO and 3-DG were measured by LC-MS in 1304 serum samples of two populations (KORA, n = 482; BiDirect, n = 822) and assessed for associations with genome-wide SNPs (GWAS) and with phenome-wide traits.