Nucleic Acids Res
July 1977
A new way of studying RNA-protein complexes, using neutron small angle scattering in solution, is described and was applied in the case of the system, yeast valyl-tRNA synthetase, interacting with its cognate and non cognate yeast tRNAs. It was shown that, when limited amounts of tRNA (either cognate or non cognate) are added to valyl-tRNA synthetase, a complex consisting of two enzyme molecules and one tRNA molecule is first formed. It is subsequently dissociated to a one to one complex when more tRNA is present in the solution.
View Article and Find Full Text PDFSeveral fractionation steps are described which can be applied to the partial purification of the 20 aminoacyl-tRNA synthetases from commercial baker's yeast. Comparative experiments performed in the presence or absence of protease inhibitors revealed that some enzymes prepared in the presence of the inhibitor exhibit much higher specific activities than the proteins extracted in the absence of the inhibitor. The methodology reported can be used for the simultaneous preparation of several pure aminoacyl-tRNA synthetases.
View Article and Find Full Text PDFIncorrect tRNA aminoacylation reactions are characterized by very slow reaction rates and by the fact that in most cases they are incomplete. In a previous study some of us explained the incompleteness of the correct aminoacylation reactions of tRNA, which can be encountered under certain experimental conditions (for instance low enzyme concentration or high ionic strength) by an equilibrium between the aminoacylation and the deacylation reactions [J. Bonnet and J.
View Article and Find Full Text PDFLaser Raman spectra of yeast phenylalanine transfer RNA have been obtained in solution and in orthorhombic and hexagonal crystals. So far as one can tell from the spectra, which are identical in the two crystal forms, the molecular structure of the tRNA is not altered by differences in molecular packing in these two unit cells. In addition, the spectra of the two crystal forms show the same characteristic Raman frequencies and intensities as those of the tRNA in aqueous solution.
View Article and Find Full Text PDFYeast tRNA-Phe has been cross-linked photochemically to three aminoacyl-tRNA synthetases, yeast phenylalanyl-tRNA synthetase, Escherichia coli isoleucyl-tRNA synthetase, and E. coli valyl-tRNA synthetase. The two non-cognate enzymes are known to interact with tRNA-Phe.
View Article and Find Full Text PDFTwo forms of baker's yease valyl-tRNA synthetase have been purified to apparent homogeneity by classical methods. It was demonstrated that one of the two forms of the enzyme originates from the other by proteolysis, the respective amounts of each form depending on the physiological state of the yeast. The species mainly isolated from exponential growing yeast cells is a monomer of 130,000 daltons molecular weight.
View Article and Find Full Text PDFBull Soc Chim Biol (Paris)
March 1970