Publications by authors named "Giedrius T Buracas"

The ratio of the changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation is a critical determinant of the magnitude of the blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI). Cytochrome oxidase (CO), a key component of oxidative metabolism in the mitochondria, is non-uniformly distributed in visual area V1 in distinct blob and interblob regions, suggesting significant spatial variation in the capacity for oxygen metabolism. The goal of this study was to test whether CBF/CMRO(2) coupling differed when these subpopulations of neurons were preferentially stimulated, using chromatic and luminance stimuli to preferentially stimulate either the blob or interblob regions.

View Article and Find Full Text PDF

Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral-in due to increased BOLD signal contrast-to-noise ratio (CNR) and higher acquisition efficiency than that of spiral-out or noninterleaved spiral in/out trajectories (Law & Glover.

View Article and Find Full Text PDF

The blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) in response to changes in neural activity. This response is strongly modulated by the CBF/CMRO(2) coupling relationship with activation, defined as n, the ratio of the fractional changes. The reliability of the BOLD signal as a quantitative reflection of underlying physiological changes depends on the stability of n in response to different stimuli.

View Article and Find Full Text PDF

Top-down attention enhances neural processing, but its effect on metabolic activity in primary visual cortex (V1) is unclear. Combined blood flow and oxygenation measurements provide the best tool for investigating modulations of oxidative metabolism. We measured the human V1 response to a peripheral low contrast stimulus using fMRI and found a larger fractional modulation of blood flow with attention compared to the blood oxygenation level dependent (BOLD) response, thus indicating a much larger modulation of oxygen metabolism than was previously thought.

View Article and Find Full Text PDF

Direct measurement of neural currents by means of MRI can potentially open a high temporal resolution (10-100 ms) window applicable for monitoring dynamics of neuronal activity without loss of the high spatial resolution afforded by MRI. Previously, we have shown that the alternating balanced steady state imaging affords high sensitivity to weak periodic currents owing to its amplification of periodic spin phase perturbations. This technique, however, requires precise synchronization of such perturbations to the radiofrequency pulses.

View Article and Find Full Text PDF

While searching for an object in a visual scene, an observer's attentional focus and eye movements are often guided by information about object features and spatial locations. Both spatial and feature-specific attention are known to modulate neuronal responses in visual cortex, but little is known of the dynamics and interplay of these mechanisms as visual search progresses. To address this issue, we recorded from directionally selective cells in visual area MT of monkeys trained to covertly search for targets defined by a unique conjunction of color and motion features and to signal target detection with an eye movement to the putative target.

View Article and Find Full Text PDF

Existing functional brain MR imaging methods detect neuronal activity only indirectly via a surrogate signal such as deoxyhemoglobin concentration in the vascular bed of cerebral parenchyma. It has been recently proposed that neuronal currents may be measurable directly using MRI (ncMRI). However, limited success has been reported in neuronal current detection studies that used standard gradient or spin echo pulse sequences.

View Article and Find Full Text PDF

Attending to a visual or auditory stimulus often requires irrelevant information to be filtered out, both within the modality attended and in other modalities. For example, attentively listening to a phone conversation can diminish our ability to detect visual events. We used functional magnetic resonance imaging (fMRI) to examine brain responses to visual and auditory stimuli while subjects attended visual or auditory information.

View Article and Find Full Text PDF

Previous electrophysiology data suggests that the modulation of neuronal firing by spatial attention depends on stimulus contrast, which has been described using either a multiplicative gain or a contrast-gain model. Here we measured the effect of spatial attention on contrast responses in humans using functional MRI. To our surprise, we found that the modulation of blood oxygenation level-dependent (BOLD) responses by spatial attention does not greatly depend on stimulus contrast in visual cortical areas tested [V1, V2, V3, and MT+ (middle temporal area)].

View Article and Find Full Text PDF

We compared psychophysical and functional magnetic resonance imaging (fMRI) responses within areas V1-V3 and MT+ during both a speed and a contrast discrimination task. We found that fMRI responses did not depend significantly on task in any of these areas. Moreover, responses in V1-V3 were larger than those in MT+ for both the speed and the contrast discrimination tasks across a wide range of contrasts.

View Article and Find Full Text PDF

The blood oxygenation level-dependent (BOLD) responses to visual stimuli, using both a 1-s long single trial stimulus and a 20-s long block stimulus, were measured in a 4-T magnetic field both before and immediately after a 200-mg caffeine dose. In addition, resting levels of cerebral blood flow (CBF) were measured using arterial spin labeling. For the single trial stimulus, the caffeine dose significantly (p<0.

View Article and Find Full Text PDF

We used a divided attention psychophysical task to test the hypothesis that visual attention to a stimulus feature(1) facilitates the processing of other stimuli sharing the same feature. Performance on a dual-task was significantly better when human observers divided attention across two spatially separate stimuli sharing a common feature (same direction of motion or same color) compared to opposing features. This attentional effect was dependent upon the presence of competing stimuli.

View Article and Find Full Text PDF

Rapid event-related fMRI (erfMRI) allows estimation of the shape of hemodynamic responses (HDR) associated with transient brain activation evoked by various sensory, motor, and cognitive events. Choosing a sequence of events that maximizes efficiency of estimating the HDR is essential for conducting event-related brain imaging experiments, since increasing efficiency is essentially equivalent to reducing scanning time or increasing the strength of the principal magnetic field. The efficiency of an erfMRI design depends critically on the temporal arrangement of the sequence of events and the noise in the fMRI signal.

View Article and Find Full Text PDF

The content of visual experience depends on how selective attention is distributed in the visual field. We used functional magnetic resonance imaging (fMRI) in humans to test whether feature-based attention can globally influence visual cortical responses to stimuli outside the attended location. Attention to a stimulus feature (color or direction of motion) increased the response of cortical visual areas to a spatially distant, ignored stimulus that shared the same feature.

View Article and Find Full Text PDF