Publications by authors named "Giedre Valiuliene"

Treatment-resistant depression (TRD) is a challenging issue to address. Repetitive transcranial magnetic stimulation (rTMS) is commonly used but shows varying efficacy, necessitating a deeper understanding of depression physiology and rTMS mechanisms. Notably, an increasing amount of recent data has displayed the connection of TRD and its clinical outcome with chronic inflammatory processes.

View Article and Find Full Text PDF

Human amniotic fluid stem cells (hAFSCs) are known for their advantageous properties when compared to somatic stem cells from other sources. Recently hAFSCs have gained attention for their neurogenic potential and secretory profile. However, hAFSCs in three-dimensional (3D) cultures remain poorly investigated.

View Article and Find Full Text PDF

Human amniotic fluid stem cells (hAFSCs) possess some characteristics with mesenchymal stem cells (MSCs) and embryonic stem cells and have a broader differentiation potential compared to MSCs derived from other sources. Although hAFSCs are widely researched, their analysis mainly involves stem cells (SCs) obtained from normal, fetus-unaffected gestations. However, in clinical settings, knowledge about hAFSCs from normal gestations could be poorly translational, as hAFSCs from healthy and fetus-diseased gestations may differ in their differentiation and metabolic potential.

View Article and Find Full Text PDF

When looking for the causes and treatments of infertility, much attention is paid to one of the reproductive tissues-the endometrium. Therefore, endometrial stem cells are an attractive target for infertility studies in women of unexplained origin. Menstrual blood stem cells (MenSCs) are morphologically and functionally similar to cells derived directly from the endometrium; with dual expression of mesenchymal and embryonic cell markers, they proliferate and regenerate better than bone marrow mesenchymal stem cells.

View Article and Find Full Text PDF

Metabolic landscape and sensitivity to apoptosis induction play a crucial role in acute myeloid leukemia (AML) resistance. Therefore, we investigated the effect of metformin, a medication that also acts as an inhibitor of oxidative phosphorylation (OXPHOS), and MCL-1 inhibitor S63845 in AML cell lines NB4, KG1 and chemoresistant KG1A cells. The impact of compounds was evaluated using fluorescence-based metabolic flux analysis, assessment of mitochondrial Δψ and cellular ROS, trypan blue exclusion, Annexin V-PI and XTT tests for cell death and cytotoxicity estimations, also RT-qPCR and Western blot for gene and protein expression.

View Article and Find Full Text PDF

Resistance to pharmacological treatment poses a notable challenge for psychiatry. Such cases are usually treated with brain stimulation techniques, including repetitive transcranial magnetic stimulation (rTMS) and electroconvulsive therapy (ECT). Empirical evidence links treatment resistance to insufficient brain plasticity and chronic inflammation.

View Article and Find Full Text PDF

Although majority of acute promyelocytic leukemia (APL) patients achieve complete remission after the standard treatment, 5-10% of patients are shown to relapse or develop resistance to treatment. In such cases, medications that target epigenetic processes could become an appealing supplementary approach. In this study, we tested the anti-leukemic activity of histone deacetylase inhibitor Belinostat (PXD101) and histone methyltransferase inhibitor 3-Deazaneplanocin A combined with all-trans retinoic acid in APL cells NB4, promyelocytes resembling HL-60 cells and APL patients' cells.

View Article and Find Full Text PDF

Effects of amyloid beta (Aβ) oligomers on viability and function of cell lines such as NB4 (human acute promyelocytic leukemia), A549 (human lung cancer (adenocarcinomic alveolar basal epithelial tumor)) and MCF-7 (human breast cancer (invasive breast ductal carcinoma)) were investigated. Two types of Aβ oligomers were used in the study. The first type was produced in the presence of oligomerization inhibitor, hexafluoroisopropanol (HFIP).

View Article and Find Full Text PDF

Development of acute myeloid leukemia is usually sustained by deregulated epigenome. Alterations in DNA methylation and histone modifications are common manifestations of the disease. Acute promyelocytic leukemia (APL) is not an exception.

View Article and Find Full Text PDF

Xenograft models are suitable for in vivo study of leukemia's pathogenesis and the preclinical development of anti-leukemia agents but understanding of epigenetic regulatory mechanisms linking to adult cell functions in pathological conditions during different in vivo treatments is yet unknown. In this study, for the first time epigenetic chromatin modifications were characterized in tissues and tumours from murine xenograft model generated using the human acute promyelocytic leukemia (APL) NB4 cells engrafted in immunodeficient NOG mice. Xenografts were subjected to combined epigenetic treatment by histone deacetylase inhibitor Belinostat, histone methyltransferase inhibitor 3-DZNeaplanocin A and all-trans-retinoic acid based on in vitro model, where such combination inhibited NB4 cell growth and enhanced retinoic acid-induced differentiation to granulocytes.

View Article and Find Full Text PDF

Human amniotic fluid stem cells have become an attractive stem cell source for potential applications in regenerative medicine and tissue engineering. The aim of this study was to characterize amniotic fluid-derived mesenchymal stem cells (AF-MSCs) from second- and third-trimester of gestation. Using two-stage protocol, MSCs were successfully cultured and exhibited typical stem cell morphological, specific cell surface, and pluripotency markers characteristics.

View Article and Find Full Text PDF

A series of α-branched α,β-unsaturated ketones were prepared via boron trifluoride etherate mediated reaction between arylalkynes and carboxaldehydes. The evaluation of the antiproliferative activity over hematological (NB4) and solid cancer (A549, MCF-7) cell lines provided a structure-activity relationship. 5-Parameter QSAR equations were built which were able to explain 80%-92% of the variance in activity.

View Article and Find Full Text PDF

Epigenetic changes play a significant role in leukaemia pathogenesis, therefore histone deacetylases (HDACis) are widely accepted as an attractive strategy for acute promyelocytic leukaemia (APL) treatment. Belinostat (Bel, PXD101), a hydroxamate-type HDACi, has proved to be a promising cure in clinical trials for solid tumours and haematological malignancies. However, insight into molecular effects of Bel on APL, is still lacking.

View Article and Find Full Text PDF

The involvement of histone lysine methyltransferases (HMT) in carcinogenesis is not well understood. Here, we describe a dose-dependent growth and survival inhibitory effects of BIX-01294, a specific inhibitor of euchromatic HMT2, in promyelocytic leukemia HL-60 and NB4 cells. BIX-01294 combined with all-trans retinoic acid or together with histone deacetylase and DNA methyltransferase inhibitors enhanced cell differentiation to granulocytes and induced cell line-specific changes in the expression of cell cycle-, survival- and differentiation regulating genes and proteins in association with histone modification state.

View Article and Find Full Text PDF

Therapeutic strategies targeting histone deacetylase (HDAC) inhibition have become promising in many human malignancies. Belinostat (PXD101) is a hydroxamate-type HDAC inhibitor tested in phase I and II clinical trials in solid tumors and hematological cancers. However, little is known about the use of belinostat for differentiation therapy against acute myelogenous leukemia.

View Article and Find Full Text PDF