Publications by authors named "Giedre Krenciute"

Background: Oncofetal splice variants of extracellular matrix (ECM) proteins present a unique group of target antigens for the immunotherapy of pediatric cancers. However, limited data is available if these splice variants can be targeted with T cells expressing chimeric antigen receptors (CARs).

Methods: To determine the expression of the oncofetal version of tenascin C (TNC) encoding the C domain (C.

View Article and Find Full Text PDF

Immune synapse (IS) formation determines T cell antitumor activity. Here, we present a protocol for characterizing the IS formation between chimeric antigen receptor (CAR) T cells and tumor cells by measuring the IS size and calcium flux by live-cell imaging. We describe steps for CAR T cell manufacturing, sample preparation, image acquisition, and data analysis.

View Article and Find Full Text PDF
Article Synopsis
  • CAR T cell therapies have helped many people with blood cancers, but some still don't respond to the treatment.
  • Using CAR T cells with chemotherapy drugs could make the treatment work better for more types of cancer, especially solid tumors.
  • This review discusses how combining CAR T cells and chemotherapy can overcome challenges and improve treatment outcomes for cancer patients.
View Article and Find Full Text PDF

T cell receptor (TCR) engagement initiates the activation process, and this signaling event is regulated in multifaceted ways. Nutrient availability in the immediate niche is one such mode of regulation . Here, we investigated how the availability of an essential amino acid methionine (Met) and TCR signaling might interplay in the earliest events of T cell activation to affect subsequent T cell fate and function.

View Article and Find Full Text PDF

The emergence of immune escape is a significant roadblock to developing effective chimeric antigen receptor (CAR) T cell therapies against hematological malignancies, including acute myeloid leukemia (AML). Here, we demonstrate feasibility of targeting two antigens simultaneously by combining a GRP78-specific peptide antigen recognition domain with a CD123-specific scFv to generate a peptide-scFv bispecific antigen recognition domain (78.123).

View Article and Find Full Text PDF

Cluster of differentiation 19 (CD19) chimeric antigen receptor (CAR) T cells are a highly effective immunotherapy for relapsed and refractory B-cell malignancies, but their utility can be limited by the development of immune effector cell-associated neurotoxicity syndrome (ICANS). The recent discovery of CD19 expression on the pericytes in the blood-brain barrier (BBB) suggests an important off-target mechanism for ICANS development. In addition, the release of systemic cytokines stimulated by the engagement of CD19 with the CAR T cells can cause endothelial activation and decreased expression of tight junction molecules, further damaging the integrity of the BBB.

View Article and Find Full Text PDF

The limited availability of cytokines in solid tumours hinders maintenance of the antitumour activity of chimeric antigen receptor (CAR) T cells. Cytokine receptor signalling pathways in CAR T cells can be activated by transgenic expression or injection of cytokines in the tumour, or by engineering the activation of cognate cytokine receptors. However, these strategies are constrained by toxicity arising from the activation of bystander cells, by the suboptimal biodistribution of the cytokines and by downregulation of the cognate receptor.

View Article and Find Full Text PDF

Lack of targetable antigens is a key limitation for developing successful T cell-based immunotherapies. Members of the unfolded protein response (UPR) represent ideal immunotherapy targets because the UPR regulates the ability of cancer cells to resist cell death, sustain proliferation, and metastasize. Glucose-regulated protein 78 (GRP78) is a key UPR regulator that is overexpressed and translocated to the cell surface of a wide variety of cancers in response to elevated endoplasmic reticulum (ER) stress.

View Article and Find Full Text PDF

Unlabelled: Understanding the intricate dynamics between adoptively transferred immune cells and the brain tumor immune microenvironment (TIME) is crucial for the development of effective T cell-based immunotherapies. In this study, we investigated the influence of the TIME and chimeric antigen receptor (CAR) design on the anti-glioma activity of B7-H3-specific CAR T-cells. Using an immunocompetent glioma model, we evaluated a panel of seven fully murine B7-H3 CARs with variations in transmembrane, costimulatory, and activation domains.

View Article and Find Full Text PDF

Background: Recent progress in cancer immunotherapy encourages the expansion of chimeric antigen receptor (CAR) T cell therapy in solid tumors including hepatocellular carcinoma (HCC). Overexpression of MET receptor tyrosine kinase is common in HCC; however, MET inhibitors are effective only when MET is in an active form, making patient stratification difficult. Specific MET-targeting CAR-T cells hold the promise of targeting HCC with MET overexpression regardless of signaling pathway activity.

View Article and Find Full Text PDF

CAR T cell persistence remains a significant roadblock to effective clinical translation of CAR T cells for solid and brain tumors. Jung et al. demonstrate enrichment of resident memory phenotypes through simple changes to the CAR T cell manufacturing process.

View Article and Find Full Text PDF

Understanding interactions between adoptively transferred immune cells and the tumor immune microenvironment (TIME) is critical for developing successful T-cell based immunotherapies. Here we investigated the impact of the TIME and chimeric antigen receptor (CAR) design on anti-glioma activity of B7-H3-specific CAR T-cells. We show that five out of six B7-H3 CARs with varying transmembrane, co-stimulatory, and activation domains, exhibit robust functionality .

View Article and Find Full Text PDF

Background: CD47 is an attractive immunotherapeutic target because it is highly expressed on multiple solid tumors. However, CD47 is also expressed on T cells. Limited studies have evaluated CD47-chimeric antigen receptor (CAR) T cells, and the role of CD47 in CAR T-cell function remains largely unknown.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) technologies have been clinically implemented for the treatment of hematological malignancies; however, solid tumors remain resilient to CAR therapeutics. Natural killer (NK) cells may provide an optimal class of immune cells for CAR-based approaches due to their inherent anti-tumor functionality. In this study, we sought to tune CAR immune synapses by adding an intracellular scaffolding protein binding site to the CAR.

View Article and Find Full Text PDF

Therapies with genetically modified T cells that express chimeric antigen receptors (CARs) specific for CD19 or B cell maturation antigen (BCMA) are approved to treat certain B cell malignancies. However, translating these successes into treatments for patients with solid tumours presents various challenges, including the risk of clinically serious on-target, off-tumour toxicity (OTOT) owing to CAR T cell-mediated cytotoxicity against non-malignant tissues expressing the target antigen. Indeed, severe OTOT has been observed in various CAR T cell clinical trials involving patients with solid tumours, highlighting the importance of establishing strategies to predict, mitigate and control the onset of this effect.

View Article and Find Full Text PDF

The efficacy of adoptive T cell therapies for cancer treatment can be limited by suppressive signals from both extrinsic factors and intrinsic inhibitory checkpoints. Targeted gene editing has the potential to overcome these limitations and enhance T cell therapeutic function. Here we performed multiple genome-wide CRISPR knock-out screens under different immunosuppressive conditions to identify genes that can be targeted to prevent T cell dysfunction.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy targeting T-cell acute lymphoblastic leukemia (T-ALL) faces limitations such as antigen selection and limited T-cell persistence. CD7 is an attractive antigen for targeting T-ALL, but overlapping expression on healthy T cells leads to fratricide of CD7-CAR T cells, requiring additional genetic modification. We took advantage of naturally occurring CD7- T cells to generate CD7-CAR (CD7-CARCD7-) T cells.

View Article and Find Full Text PDF

The identification of mechanisms to promote memory T (T) cells has important implications for vaccination and anti-cancer immunotherapy. Using a CRISPR-based screen for negative regulators of T cell generation in vivo, here we identify multiple components of the mammalian canonical BRG1/BRM-associated factor (cBAF). Several components of the cBAF complex are essential for the differentiation of activated CD8 T cells into T effector (T) cells, and their loss promotes T cell formation in vivo.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy is revolutionizing cancer immunotherapy for patients with B cell malignancies and is now being developed for solid tumors and chronic viral infections. Although clinical trials have demonstrated the curative potential of CAR T cell therapy, a substantial and well-established limitation is the heightened contraction and transient persistence of CAR T cells during prolonged antigen exposure. The underlying mechanism(s) for this dysfunctional state, often termed CAR T cell exhaustion, remains poorly defined.

View Article and Find Full Text PDF

Despite decades of research, pediatric central nervous system (CNS) tumors remain the most debilitating, difficult to treat, and deadliest cancers. Current therapies, including radiation, chemotherapy, and/or surgery, are unable to cure these diseases and are associated with serious adverse effects and long-term impairments. Immunotherapy using chimeric antigen receptor (CAR) T cells has the potential to elucidate therapeutic antitumor immune responses that improve survival without the devastating adverse effects associated with other therapies.

View Article and Find Full Text PDF

To gain insight into the signaling determinants of effector-associated DNA methylation programming among CD8 T cells, we explore the role of interleukin (IL)-12 in the imprinting of IFNg expression during CD8 T cell priming. We observe that anti-CD3/CD28-mediated stimulation of human naive CD8 T cells is not sufficient to induce substantial demethylation of the IFNg promoter. However, anti-CD3/CD28 stimulation in the presence of the inflammatory cytokine, IL-12, results in stable demethylation of the IFNg locus that is commensurate with IFNg expression.

View Article and Find Full Text PDF

On-target/off-tumor toxicity is one of the major concerns regarding CAR T-cell therapy. Kosti et al. demonstrate that this form of toxicity can be prevented by designing a CAR whose expression is controlled by oxygen levels in the tumor environment.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy has had limited success in early-phase clinical studies for solid tumors. Lack of efficacy is most likely multifactorial, including a limited array of targetable antigens. We reasoned that targeting the cancer-specific extra domain B (EDB) splice variant of fibronectin might overcome this limitation because it is abundantly secreted by cancer cells and adheres to their cell surface.

View Article and Find Full Text PDF

Background: Immunotherapy with chimeric antigen receptor (CAR) T cells is actively being explored for pediatric brain tumors in preclinical models and early phase clinical studies. At present, it is unclear which CAR target antigens are consistently expressed across different pediatric brain tumor types. In addition, the extent of HLA class I expression is unknown, which is critical for tumor recognition by conventional αβTCR T cells.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common malignant brain cancer that invades normal brain tissue and impedes surgical eradication, resulting in early local recurrence and high mortality. In addition, most therapeutic agents lack permeability across the blood brain barrier (BBB), further reducing the efficacy of chemotherapy. Thus, effective treatment against GBM requires tumor specific targets and efficient intracranial drug delivery.

View Article and Find Full Text PDF