The influence of climate change on civil conflict and societal instability in the premodern world is a subject of much debate, in part because of the limited temporal or disciplinary scope of case studies. We present a transdisciplinary case study that combines archeological, historical, and paleoclimate datasets to explore the dynamic, shifting relationships among climate change, civil conflict, and political collapse at Mayapan, the largest Postclassic Maya capital of the Yucatán Peninsula in the thirteenth and fourteenth centuries CE. Multiple data sources indicate that civil conflict increased significantly and generalized linear modeling correlates strife in the city with drought conditions between 1400 and 1450 cal.
View Article and Find Full Text PDFThe Irrawaddy (Ayeyarwaddy) and Salween (Thanlwin) globally rank among the largest rivers for supplying dissolved and particulate material to the ocean. Along with the Sittaung and Kaladan rivers they have societal importance to Myanmar in terms water sources and food production. Despite their importance for global biogeochemical cycles and the ~50 million people who live in their catchments, the chemistry of these rivers is poorly known.
View Article and Find Full Text PDFPeninsular India hosts the initial rain-down of the Indian Summer Monsoon (ISM) after which winds travel further east inwards into Asia. Stalagmite oxygen isotope composition from this region, such as those from Belum Cave, preserve the vital signals of the past ISM variability. These archives experience a single wet season with a single dominant moisture source annually.
View Article and Find Full Text PDFWe present an application of multi-isotopic fingerprints (i.e., U/U, U/U, U/I and I/I) for the discovery of previously unrecognized sources of anthropogenic radioactivity.
View Article and Find Full Text PDFBetween 5 and 4 thousand years ago, crippling megadroughts led to the disruption of ancient civilizations across parts of Africa and Asia, yet the extent of these climate extremes in mainland Southeast Asia (MSEA) has never been defined. This is despite archeological evidence showing a shift in human settlement patterns across the region during this period. We report evidence from stalagmite climate records indicating a major decrease of monsoon rainfall in MSEA during the mid- to late Holocene, coincident with African monsoon failure during the end of the Green Sahara.
View Article and Find Full Text PDFThe extent to which climate change causes significant societal disruption remains controversial. An important example is the decline of the Akkadian Empire in northern Mesopotamia ∼4.2 ka, for which the existence of a coincident climate event is still uncertain.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
November 2016
Quantifying fluxes of trace elements and their isotopes (TEIs) at the ocean's sediment-water boundary is a pre-eminent challenge to understand their role in the present, past and future ocean. There are multiple processes that drive the uptake and release of TEIs, and properties that determine their rates are unevenly distributed (e.g.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2013
The global marine distributions of Cd and phosphate are closely correlated, which has led to Cd being considered as a marine micronutrient, despite its toxicity to life. The explanation for this nutrient-like behavior is unknown because there is only one identified biochemical function for Cd, an unusual Cd/Zn carbonic anhydrase. Recent developments in Cd isotope mass spectrometry have revealed that Cd uptake by phytoplankton causes isotopic fractionation in the open ocean and in culture.
View Article and Find Full Text PDFPast sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation.
View Article and Find Full Text PDFThe phasing of millennial-scale oscillations in Antarctica relative to those elsewhere in the world is important for discriminating among models for abrupt climate change, particularly those involving the Southern Ocean. However, records of millennial-scale variability from Antarctica dating to the last glacial maximum are rare and rely heavily on data from widely spaced ice cores, some of which show little variability through that time. Here, we present new data from closed-basin lakes in the Dry Valleys region of East Antarctica that show high-magnitude, high-frequency oscillations in surface level during the late Pleistocene synchronous with climate fluctuations elsewhere in the Southern Hemisphere.
View Article and Find Full Text PDFThe meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial.
View Article and Find Full Text PDFDust plays a vital role in climate and biophysical feedbacks in the Earth system. One source of dust, the Bodélé Depression in Chad, is estimated to produce about half the mineral aerosols emitted from the Sahara, which is the world's largest source. By using a variety of new remote sensing data, regional modeling, trajectory models, chemical analyses of dust, and future climate simulations, we investigate the current and past sensitivity of the Bodélé.
View Article and Find Full Text PDFThe timing of sea-level change provides important constraints on the mechanisms driving Earth's climate between glacial and interglacial states. Fossil corals constrain the timing of past sea level by their suitability for dating and their growth position close to sea level. The coral-derived age for the last deglaciation is consistent with climate change forced by Northern Hemisphere summer insolation (NHI), but the timing of the penultimate deglaciation is more controversial.
View Article and Find Full Text PDFThis manuscript describes a new protocol for determination of Pa/Th/U in marine sediments. It is based on microwave-assisted digestion and represents an important reduction of working time over conventional hot-plate digestion methods, and the use of HClO(4) is avoided. Although Th and U are completely dissolved with a first microwave step, around 40% of (231)Pa remains undissolved, and a short hot-plate step with reverse aqua regia is required to achieve total digestion and spike equilibration.
View Article and Find Full Text PDFEarth's climate can change substantially on time scales of 1000 years or so, but given the time it takes for an ice sheet to grow or melt, it has been unclear whether continental ice sheets-and hence global sea levels-mirror these rapid changes. In his Perspective, Henderson discusses the report by Thompson and Goldstein, who have used a new correction method to date coral samples that are up to 250,000 years old. The corals can be used to deduce past sea levels.
View Article and Find Full Text PDFThe large variation in the ratio of uranium-234 to uranium-238 (234U/238U) in rivers is not well understood, but may provide information about past weathering and rainfall and is important because it controls seawater (234U/238U). Here, we demonstrate the importance of physical weathering and rainfall for (234U/238U), using rivers from South Island, New Zealand. These data allow interpretation of an existing speleothem (234U/238U) record and suggest that New Zealand glacier advance 13,000 years ago was influenced by increased rainfall rather than by Younger Dryas-like cooling.
View Article and Find Full Text PDF