This article explores the psychophysiological metrics during expert and novice performances in marksmanship, combat deadly force judgment and decision making (DFJDM), and interactions of teams. Electroencephalography (EEG) and electrocardiography (ECG) are used to characterize the psychophysiological profiles within all categories. Closed-loop biofeedback was administered to accelerate learning during marksmanship training in which the results show a difference in groups that received feedback compared with the control.
View Article and Find Full Text PDFThe design of control systems for limb prostheses seems likely to benefit from an understanding of how sensorimotor integration is achieved in the intact system. Traditional BMIs guess what movement parameters are encoded by brain activity and then decode them to drive prostheses directly. Modeling the known structure and emergent properties of the biological decoder itself is likely to be more effective in bridging from normal brain activity to functionally useful limb movement.
View Article and Find Full Text PDFThe performance of motor tasks requires the coordinated control and continuous adjustment of myriad individual muscles. The basic commands for the successful performance of a sensorimotor task originate in "higher" centers such as the motor cortex, but the actual muscle activation and resulting torques and motion are considerably shaped by the integrative function of the spinal interneurons. The relative contributions of brain and spinal cord are less clear for reaching movements than for automatic tasks such as locomotion.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2010
The learning of a novel task currently rely heavily on conventional classroom instruction with qualitative assessment and observation. Introduction of individualized tutorials with integrated neuroscience-based evaluation techniques could significantly accelerate skill acquisition and provide quantitative evidence of successful training. We have created a suite of adaptive and interactive neuro-educational technologies (I-NET) to increase the pace and efficiency of skill learning.
View Article and Find Full Text PDF