Enzymatic polymerization of lignosulfonate (LS) has a high potential for various applications ranging from coatings to adhesives. Here, the effect of different ions in low concentrations on enzymatic polymerization of LS was investigated, including salt solutions consisting of mono- and dicarboxylic acids, sulfate, phosphate and chloride with sodium as counter ion. LS polymerization was followed by viscometry and size exclusion (SEC) chromatography.
View Article and Find Full Text PDFChitin, a polysaccharide composed of β-(1-4)-linked 2-deoxy-2-acetamido-d-glucose units, is found in cell walls of different organisms, including crustaceans, fungi, insects, some algae, microorganisms, and some invertebrate animals, and its deacetylation into chitosan confers it with incredible chemical versatility allowing it to be processed into numerous products [...
View Article and Find Full Text PDFA novel strategy for improving wet resistance and bonding properties of starch-based adhesives using enzymatically polymerized lignosulfonates and carboxylic acids as additives was developed. Therefore, lignosulfonates were polymerized by laccase to a molecular weight of 750 kDa. Incorporation of low concentrations (up to 1% of the starch weight) of 1,2,3,4-butanetetracarboxylic acid (BTCA) led to further improvement on the properties of the adhesives, while addition of greater amounts of BTCA led to a decrease in the properties measured due to large viscosity increases.
View Article and Find Full Text PDFChitosan, a copolymer of glucosamine and -acetyl glucosamine, is derived from chitin. Chitin is found in cell walls of crustaceans, fungi, insects and in some algae, microorganisms, and some invertebrate animals. Chitosan is emerging as a very important raw material for the synthesis of a wide range of products used for food, medical, pharmaceutical, health care, agriculture, industry, and environmental pollution protection.
View Article and Find Full Text PDFLignosulfonate (LS), one of the byproducts of the paper and pulp industry, was mainly used as an energy source in the last decade until the valorization of lignin through different functionalization methods grew in importance. Polymerization using multicopper oxidase laccase (from the fungus) is one of such methods, which not only enhances properties such as hydrophobicity, flame retardancy, and bonding properties but can also be used for food and possesses pharmaceutical-like antimicrobial properties and aesthetic features of materials. Appropriate downstream processing methods are needed to produce solids that allow the preservation of particle morphology, a vital factor for the valorization process.
View Article and Find Full Text PDFThis work describes a new method for improving the properties, mainly the wet-resistance, of starch-based adhesives using enzymatically polymerized lignosulfonates. A correlation of viscosity with molecular weight was found, allowing simple control of enzymatic polymerization of lignosulfonates. Incorporation of lignosulfonates polymerized from 29 kDa to > 4500 kDa using laccase led to a considerable increase in wet-resistance (from 15 to 20 min for the laminating glue and from 150 to 1200 min for the bag glue) while not affecting (for the laminating glue) or even improving the bonding time (from 80 to 60 s for the bag glue).
View Article and Find Full Text PDFThis study investigates the effect of the enzymatic polymerization of lignosulfonate for the formulation of a lignosulfonate-based adhesive. For this, beech lamellas were glued together and tested according to the EN 302-1 standard. The results showed that the laccase-polymerized lignosulfonate-based wood adhesives (LS-p) had similar mechanical properties as a standard carpenter's glue (PVAc-based D3 class white glue), as no significant difference in tensile shear strength between these two adhesive types was found.
View Article and Find Full Text PDFModification of kraft lignin (KL), traditionally uses harsh and energy-demanding physical and chemical processes. In this study, the potential of the bacterial laccase CotA (spore coating protein A) for oxidation of KL under mild conditions was assessed. Thereby, the efficiency of CotA to oxidize both softwood and hardwood KL of varying purity at alkaline conditions was examined.
View Article and Find Full Text PDFEnzymatic polymerization of lignin can generate a variety of value-added products concomitantly replacing fossil-based resources. In line with this approach, a laccase from the thermophilic fungus (MtL) was used to couple a hydrophobicity enhancing fluorophenol (FP) molecule, namely 4-[4-(trifluoromethyl)phenoxy]phenol (4,4-F3MPP), as a model substrate onto lignosulfonate (LS). During the coupling reaction changes in fluorescence, phenol content, viscosity and molecular weight (size exclusion chromatography; SEC) were monitored.
View Article and Find Full Text PDFOf the 25 million tons of plastic waste produced every year in Europe, 40% of these are not reused or recycled, thus contributing to environmental pollution, one of the major challenges of the 21st century. Most of these plastics are made of petrochemical-derived polymers which are very difficult to degrade and as a result, a lot of research efforts have been made on more environmentally friendly alternatives. Bio-based monomers, derived from renewable raw materials, constitute a possible solution for the replacement of oil-derived monomers, with furan derivatives that emerged as platform molecules having a great potential for the synthesis of biobased polyesters, polyamides and their copolymers.
View Article and Find Full Text PDFAscorbate oxidases are an enzyme group that has not been explored to a large extent. So far, mainly ascorbate oxidases from plants and only a few from fungi have been described. Although ascorbate oxidases belong to the well-studied enzyme family of multi-copper oxidases, their function is still unclear.
View Article and Find Full Text PDFThis study presents a novel fully enzymatic process for the controlled depolymerisation of fungal and shrimp chitosan, and their subsequent use in the synthesis of lignin cross-linked chitosan (CTS) hydrogels. Cellobiosehydrolase (CBH) was used to depolymerize CTS resulting in decrease in average molecular weight (Mw) of shrimp CTS from 140 kDa and degree of deacetylation (DD %) from 91.3% to an average MW of 15 kDa and 16% DD.
View Article and Find Full Text PDFComparative studies of the effects of two commercial enzyme formulations on fiber refining were conducted. Extensive basic characterisation of the enzymes involved, assessment of their hydrolytic activities on different model substrates as well as on different pulps (softwood sulfate, softwood sulfite, hardwood sulfate) were evaluated. Both enzyme formulations showed endoglucanase as well as some xylanase and β-glucosidase activity.
View Article and Find Full Text PDFTrends Biotechnol
November 2020
Lignin, a structural component of lignocellulosic plants, is an alternative raw material with enormous potential to replace diminishing fossil-based resources for the sustainable production of many chemicals and materials. Unfortunately, lignin's heterogeneity, low reactivity, and strong intra- and intermolecular hydrogen interactions and modifications introduced during the pulping process present significant technical challenges. However, the increasing ability to tailor lignin biosynthesis pathways by targeting enzymes and the continued discovery of more robust biocatalysts are enabling the synthesis of novel valuable products.
View Article and Find Full Text PDFThe potential of lignosulfonates as widely underutilized byproducts of the pulp and paper industry for the synthesis of a biodegradable pesticide carrier system was assessed in this study. Design of experiment software MODDE Pro was for the first time applied to optimize lignosulfonate granule production using laccase as a biocatalyst. Enzymatic cross-linking was monitored using size exclusion chromatography coupled online to multiangle laser light scattering, viscosity measurement, and enzyme activity.
View Article and Find Full Text PDFTrends Biotechnol
October 2018
Hydrogels are 3D hydrophilic polymer networks that absorb and hold huge amounts of water. Although hydrogels have traditionally been synthesized using chemical and physical methods, rapid developments in enzyme technology that, like chemical-based methods, enable the formation of stable covalent bonds are fast emerging as alternative 'green catalyst' tools. Enzymes show great potential for the synthesis of complex multifunctional wound dressing hydrogels (WDHs) ex situ and in situ as well as in acting as interactive molecules to promote the wound healing process.
View Article and Find Full Text PDFA bioactive O-carboxymethyl chitosan (CMCS) hydrogel crosslinked with natural phenolics with potential application in wound dressings was synthesized using a laccase from Myceliophthora thermophila (MTL). The highest degree of cross-linking (49.7%) was achieved with catechol.
View Article and Find Full Text PDFChitosan hydrogels are gaining increasing interest for biomedical applications due to attractive properties such as biocompatibility. In order to replace toxic chemical cross-linkers for hydrogel formation, we investigated the cross-linking potential of laccase oxidized phenolics. HPLC-TOF-MS and ATR-FTIR demonstrated that phenolics were bond to glucosamine as chitosan model substrate.
View Article and Find Full Text PDFEnzymatic polymerization of lignin is an environmentally-friendly and sustainable method that is investigated for its potential in opening-up new applications of one of the most abundant biopolymers on our planet. In this work, the laccase from was successfully immobilized onto Accurel MP1000 beads (67% of protein bound to the polymeric carrier) and the biocatalyzed oxidation of Kraft lignin (KL) and lignosulfonate (LS) were carried out. Fluorescence intensity determination, phenol content analysis and size exclusion chromatography were performed in order to elucidate the extent of the polymerization reaction.
View Article and Find Full Text PDFIncreasing prevalence of chronic wounds and microbial infection constitute a severe health challenge. The situation is further complicated by emerging multidrug resistance making the treatment of infections increasingly difficult. Here, a novel antimicrobial system based on in situ release of hydrogen peroxide (H2O2) by cellobiose dehydrogenase (CDH) immobilized on chitosan (CTS) particles is described.
View Article and Find Full Text PDFThis study reports for the first time the ability of laccases adsorbed on cellulose acetate to eliminate toxicants released during combustion processes. Laccases directly oxidized and eliminated more than 40% w/v of 14 mM of 1,4-dihydroxybenzene (hydroquinone); 2-methyl-1,4-benzenediol (methylhydroquinone); 1,4-dihydroxy-2,3,5-trimethylbenzene (trimethylhydroquinone); 3-methylphenol (m-cresol); 4-methylphenol (p-cresol); 2-methylphenol (o-cresol); 1,3-benzenediol (resorcinol); 1,2-dihydroxybenzene (catechol); 3,4-dihydroxytoluene (4-methylcatechol) and 2-naphthylamine. Further, laccase oxidized 2-naphthylamine, hydroquinone, catechol, methylhydroquinone and methylcatechol were also able to in turn mediate the elimination of >90% w/v of toxicants which are per-se non-laccase substrates such as 3-aminobiphenyl; 4-aminobiphenyl; benz[a]anthracene; 3-(1-nitrosopyrrolidin-2-yl) pyridine (NNN); formaldehyde; 4-(methyl-nitrosamino-1-(3-pyridyl)-1-butanone (NNK); 2-butenal (crotonaldehyde); nitric oxide and vinyl cyanide (acrylonitrile).
View Article and Find Full Text PDFThere is an urgent need for antimicrobial functionalization of urinary catheters to prevent microbial colonization and biofilm formation on them. Here, the antimicrobial hydrogen peroxide (HO) producing enzyme cellobiose dehydrogenase (CDH) was for the first time grafted onto polydimethylsiloxanes (PDMS) using an ultrasound assisted coating method. This resulted in the development of an effective in situ continous HO producing system able to continuously prevent microbial colonization and biofilm formation on catheters.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2016
Urinary catheters expose patients to a high risk of acquiring nosocomial infections. To prevent this risk of infection, cellobiose dehydrogenase (CDH), an antimicrobial enzyme able to use various oligosaccharides as electron donors to produce hydrogen peroxide using oxygen as an electron acceptor, was covalently grafted onto plasma-activated urinary polydimethylsiloxane (PDMS) catheter surfaces. Successful immobilization of CDH on PDMS was confirmed by Fourier transformed-infrared spectrometry and production of H2 O2 .
View Article and Find Full Text PDFThe ability of cellobiose dehydrogenase (CDH) to produce hydrogen peroxide (H(2)O(2)) for antimicrobial and antibiofilm functionalisation of urinary catheters was investigated. A recombinantly produced CDH from Myriococcum thermophilum was shown to completely inhibit the growth of Escherichia coli and Staphylococcus aureus both in liquid and solid media when supplemented with either 0.8 mM or 2 mM cellobiose as substrate.
View Article and Find Full Text PDFBackground: The ability of fungal cellobiose dehydrogenase (CDH) to generate H2O2 in-situ is highly interesting for biotechnological applications like cotton bleaching, laundry detergents or antimicrobial functionalization of medical devices. CDH's ability to directly use polysaccharide derived mono- and oligosaccharides as substrates is a considerable advantage compared to other oxidases such as glucose oxidase which are limited to monosaccharides. However CDH's low activity with oxygen as electron acceptor hampers its industrial use for H2O2 production.
View Article and Find Full Text PDF