J Phys Chem A
December 2024
Photoelectron imaging of the doubly deprotonated ethylenediaminetetraacetic acid dianion (EDTA) at variable wavelengths indicates two electron loss pathways: direct detachment and thermionic emission from monoanions. The structure of EDTA is also investigated by electronic structure calculations, which indicate that EDTA has two intramolecular hydrogen bonds linking a carboxylate and carboxylic acid group at either end of the molecular backbone. The direct detachment feature in the photoelectron spectrum is very broad and provides evidence for a dissociative photodetachment, where decarboxylation occurs rapidly after electron loss.
View Article and Find Full Text PDFPhotoelectron spectroscopy and electronic structure calculations are used to investigate the electronic structure of the deprotonated anionic form of the aromatic amino acid tryptophan, and its chromophore, indole. The photoelectron spectra of tryptophan, recorded at different wavelengths across the UV, consist of two direct detachment channels and thermionic emission, whereas the = 4.66 eV spectrum of indole consists of two direct detachment features.
View Article and Find Full Text PDFPhotoelectron imaging, electron action spectroscopy and electronic structure calculations are used to probe the structure and dynamics of MnO. Following excitation to the first bright absorption band of MnO (1T), photodetachment, ground state electron loss, and photodissociation, to produce MnO, are both observed to occur simultaneously. MnO is produced in an excited electronic state, identified as a triplet state, which indicates that the dissociation proceeds on singlet potential energy surfaces spin conservation.
View Article and Find Full Text PDFThe decarboxylation dynamics of the doubly deprotonated fluorescein dianion, Fl2-, are investigated by recording fragment action spectra for the anion, Fl-, and its decarboxylated analog, Fl-CO2-, using a new reflectron secondary mass spectrometer. The formation of the anion, Fl-, is directly investigated by photoelectron imaging. The Fl- and Fl-CO2- action spectra indicate that, for λ < 400 nm, one-photon dissociative photodetachment, i.
View Article and Find Full Text PDFThe long-range electronic structure of polyanions is defined by the repulsive Coulomb barrier (RCB). Excited states can decay by resonant electron tunnelling through RCBs, but such decay has not been observed for electronically excited states other than the first excited state, suggesting a Kasha-type rule for resonant electron tunnelling. Using action spectroscopy, photoelectron imaging, and computational chemistry, we show that the fluorescein dianion, Fl, partially decays through electron tunnelling from the S excited state, thus demonstrating anti-Kasha behavior, and that resonant electron tunnelling adheres to Koopmans' correlations, thus disentangling different channels.
View Article and Find Full Text PDFPhotoelectron spectroscopy has been used to study the electronic structure, photodetachment, and photodissociation of the stable diplatinum iodide dianions [PtI] and [PtI]. Photoelectron spectra over a range of photon energies show the characteristic absence of low kinetic energy photoelectrons expected for dianions as a result of the repulsive Coulomb barrier (RCB). Vertical detachment energies of ∼1.
View Article and Find Full Text PDFPhotoelectron-photofragment coincidence (PPC) spectroscopy is a powerful technique for studying the decarboxylation dynamics of carboxyl radicals. Measurement of photoelectron and photofragment kinetic energies in coincidence provides a kinematically complete measure of the dissociative photodetachment (DPD) dynamics of carboxylate anions. PPC spectroscopy studies of methanoate, ethanoate, propanoate, 2-butenoate, benzoate, -coumarate and the oxalate monoanion are reviewed.
View Article and Find Full Text PDFThe photoelectron imaging of PtI is presented over photon energies ranging from hν = 3.2 to 4.5 eV.
View Article and Find Full Text PDFThe photochemistry of pyruvic acid has attracted much scientific interest because it is believed to play critical roles in atmospheric chemistry. However, under most atmospherically relevant conditions, pyruvic acid deprotonates to form its conjugate base, the photochemistry of which is essentially unknown. Here, we present a detailed study of the photochemistry of the isolated pyruvate anion and uncover that it is extremely rich.
View Article and Find Full Text PDFInternal conversion between valence-localized and dipole-bound states is thought to be a ubiquitous process in polar molecular anions, yet there is limited direct evidence. Here, photodetachment action spectroscopy and time-resolved photoelectron imaging with a heteropolycyclic aromatic hydrocarbon (hetero-PAH) anion, deprotonated 1-pyrenol, is used to demonstrate a subpicosecond (τ = 160 ± 20 fs) valence to dipole-bound state internal conversion following excitation of the origin transition of the first valence-localized excited state. The internal conversion dynamics are evident in the photoelectron spectra and in the photoelectron angular distributions (β values) as the electronic character of the excited state population changes from valence to nonvalence.
View Article and Find Full Text PDFTwo-dimensional photoelectron spectroscopy using nanosecond and femtosecond lasers has been used to study the protopophyrin IX dianion at photon energies between 1.8-4.1 eV.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2021
Photoelectron-photofragment coincidence spectroscopy was used to study the dissociation dynamics of the conjugate bases of benzoic acid and p-coumaric acid. Upon photodetachment at 266 nm (4.66 eV) both aromatic carboxylates undergo decarboxylation, as well as the formation of stable carboxyl radicals.
View Article and Find Full Text PDFPhotoelectron-photofragment coincidence (PPC) spectroscopy is used to study the photodetachment, photodissociation, and dissociative photodetachment (DPD) of IBr, IBr , ICl, and ICl at 266 nm. The mixed trihalides are asymmetric analogs of the well-studied I anion, with distinguishable dissociation asymptotes and the potential for selective bond breaking. The high beam energy PPC spectrometer used in this study couples an electrospray ionization source, a hexapole accumulation ion trap, and a linear accelerator to produce a 21 keV beam of a particular trihalide.
View Article and Find Full Text PDFObjectives: To investigate the effects of adding high-grade quantitative evidence of outcomes of treatments into relevant Wikipedia pages on further information-seeking behaviour by the use of routinely collected data.
Setting: Wikipedia, Cochrane summary pages and the Cochrane Library.
Design: Randomised trial.
The dissociative photodetachment (DPD) dynamics of the oxalate monoanion are studied using photoelectron-photofragment coincidence (PPC) spectroscopy. Following photodetachment of COH at 4.66 eV HOCO + CO products are observed, indicating the facile decarboxylation of the radical driven by the thermodynamic stability of CO.
View Article and Find Full Text PDFPhotoelectron-photofragment coincidence (PPC) spectroscopy is used to examine the dissociative photodetachment (DPD) of I3-. The high beam energy PPC spectrometer for complex anions couples an electrospray ionization source, a hexapole accumulation ion trap and a linear accelerator to produce fast beams of I3- (M = 381 amu) anions, the heaviest system studied to date. Following photodetachment, the photoelectron and up to three photofragments are recorded in coincidence yielding a kinematically complete picture of the DPD dynamics at beam energies of 11 keV and 21 keV.
View Article and Find Full Text PDFA new high beam energy photoelectron-photofragment coincidence (PPC) spectrometer is described that allows acceleration of heavy anions (>100 amu) to energies in the tens of keV using a linear accelerator (LINAC). High beam energies result in more efficient detection of the neutral photofragments produced via dissociative photodetachment (DPD) of the parent anion and increase the mass range that can be studied with PPC spectroscopy. The novel experimental setup couples an electrospray ionization (ESI) source and a hexapole accumulation trap with a 10-stage LINAC to give a kinematically complete measurement of the dissociation dynamics for heavier anions.
View Article and Find Full Text PDFThin metallic films have a 1D quantum well along the surface normal direction, which yields particle-in-a-box style electronic quantum states. However the quantum well is not infinitely deep and the wavefunctions of these states penetrate outside the surface where the electron is bound by its own image-charge attraction. Therefore a series of discrete, vacant states reach out from the thin film into the vacuum increasing the probability of electron transfer from an external atom or molecule to the thin film, especially for the resonant case where the quantum well energy matches that of the atom.
View Article and Find Full Text PDFThe charge transfer (ionization) of hydrogen Rydberg atoms (n=25-34) incident on a Cu(100) surface is investigated. Unlike fully metallic surfaces, where the Rydberg electron energy is degenerate with the conduction band of the metal, the Cu(100) surface has a projected band gap at these energies, and only discrete image states are available through which charge transfer can take place. Resonant enhancement of charge transfer is observed for Rydberg states whose energy matches one of the image states, and the integrated surface ionization signals (signal versus applied field) show clear periodicity as a function of n as the energies come in and out of resonance with the image states.
View Article and Find Full Text PDF