IEEE Trans Audio Speech Lang Process
January 2011
Existing speech enhancement algorithms can improve speech quality but not speech intelligibility, and the reasons for that are unclear. In the present paper, we present a theoretical framework that can be used to analyze potential factors that can influence the intelligibility of processed speech. More specifically, this framework focuses on the fine-grain analysis of the distortions introduced by speech enhancement algorithms.
View Article and Find Full Text PDFMost noise-reduction algorithms used in hearing aids apply a gain to the noisy envelopes to reduce noise interference. The present study assesses the impact of two types of speech distortion introduced by noise-suppressive gain functions: amplification distortion occurring when the amplitude of the target signal is over-estimated, and attenuation distortion occurring when the target amplitude is under-estimated. Sentences corrupted by steady noise and competing talker were processed through a noise-reduction algorithm and synthesized to contain either amplification distortion, attenuation distortion or both.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2009
Traditional noise-suppression algorithms have been shown to improve speech quality, but not speech intelligibility. Motivated by prior intelligibility studies of speech synthesized using the ideal binary mask, an algorithm is proposed that decomposes the input signal into time-frequency (T-F) units and makes binary decisions, based on a Bayesian classifier, as to whether each T-F unit is dominated by the target or the masker. Speech corrupted at low signal-to-noise ratio (SNR) levels (-5 and 0 dB) using different types of maskers is synthesized by this algorithm and presented to normal-hearing listeners for identification.
View Article and Find Full Text PDF