Chronic intermittent hypoxia (CIH) is a hallmark manifestation of sleep apnea. A heightened carotid body activity and the resulting chemosensory reflex mediate increased sympathetic nerve activity by CIH. However, the mechanisms underlying heightened carotid body activity by CIH are not known.
View Article and Find Full Text PDFOxidative [Au1]stress, through the production of oxygen metabolites such as hydrogen peroxide[Au2] (H(2)O(2)), increases vascular endothelial permeability and plays a crucial role in several lung diseases. The transient receptor potential (melastatin) 2 (TRPM2) is an oxidant-sensitive, nonselective cation channel that is widely expressed in mammalian tissues, including the vascular endothelium. We have demonstrated the involvement of TRPM2 in mediating oxidant-induced calcium entry and endothelial hyperpermeability in cultured pulmonary artery endothelial cells.
View Article and Find Full Text PDFOxidative stress through the production of oxygen metabolites such as hydrogen peroxide (H2O2) increases vascular endothelial permeability. H2O2 stimulates ADP-ribose formation, which in turn opens transient receptor potential melastatin (TRPM)2 channels. Here, in endothelial cells, we demonstrate transcript and protein expression of TRPM2, a Ca2+-permeable, nonselective cation channel.
View Article and Find Full Text PDFRhoA activation and increased intracellular Ca(2+) concentration mediated by the activation of transient receptor potential channels (TRPC) both contribute to the thrombin-induced increase in endothelial cell contraction, cell shape change, and consequently to the mechanism of increased endothelial permeability. Herein, we addressed the possibility that TRPC signals RhoA activation and thereby contributes in actinomyosin-mediated endothelial cell contraction and increased endothelial permeability. Transduction of a constitutively active Galphaq mutant in human pulmonary arterial endothelial cells induced RhoA activity.
View Article and Find Full Text PDFIncreased endothelial permeability is the hallmark of inflammatory vascular edema. Inflammatory mediators that bind to heptahelical G protein-coupled receptors trigger increased endothelial permeability by increasing the intracellular Ca2+ concentration ([Ca2+]i). The rise in [Ca2+]i activates key signaling pathways that mediate cytoskeletal reorganization (through myosin-light-chain-dependent contraction) and the disassembly of VE-cadherin at the adherens junctions.
View Article and Find Full Text PDFPflugers Arch
October 2005
The endothelial cells (ECs) form a semipermeable barrier between the blood and the tissue. An important function of the endothelium is to maintain the integrity of the barrier function of the vessel wall. Ca(2+) signaling in ECs plays a key role in maintaining the barrier integrity.
View Article and Find Full Text PDFSphingosine 1-phosphate (S1P) ligation of endothelial differentiation gene-1 receptor coupled to the heterotrimeric G protein, Gi, promotes endothelial barrier strengthening via Rac-dependent assembly of adherens junctions (AJs). However, the mechanism of Rac activation induced by S1P stimulation remains unclear. In live endothelial cells expressing GFP-Rac, we observed that S1P induced the translocation of Rac to intercellular junctions, resulting in junctional sealing.
View Article and Find Full Text PDFEndothelial cells exhibit regulated exocytosis in response to inflammatory mediators such as thrombin and histamine. The exocytosis of Weibel-Palade bodies (WPBs) containing von Willebrand factor, P-selectin, and interleukin-8 within minutes after stimulation is important for vascular homeostasis. SNARE proteins are key components of the exocytic machinery in neurons and some secretory cells, but their role in regulating exocytosis in endothelial cells is not well understood.
View Article and Find Full Text PDFWe tested the hypothesis that chronic changes in intracellular Ca(2+) (Ca(2+)(i)) can result in changes in ion channel expression; this represents a novel mechanism of crosstalk between changes in Ca(2+) cycling proteins and the cardiac action potential (AP) profile. We used a transgenic mouse with cardiac-specific overexpression of sarcoplasmic reticulum Ca(2+) ATPase (SERCA) isoform 1a (SERCA1a OE) with a significant alteration of SERCA protein levels without cardiac hypertrophy or failure. Here, we report significant changes in the expression of a transient outward K(+) current (I(to,f)), a slowly inactivating K(+) current (I(K,slow)) and the steady state current (I(SS)) in the transgenic mice with resultant prolongation in cardiac action potential duration (APD) compared with the wild-type littermates.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
December 2004
We determined the effects of TNF-alpha on the expression of transient receptor potential channel (TRPC) homologues in human vascular endothelial cells and the consequences of TRPC expression on the endothelial permeability response. We observed that TNF-alpha exposure increased TRPC1 expression without significantly altering expression of other TRPC isoforms in human pulmonary artery endothelial cells (HPAEC). Because TRPC1 belongs to the store-operated cation channel family, we measured the Ca(2+) store depletion-mediated Ca(2+) influx in response to thrombin exposure.
View Article and Find Full Text PDFPalytoxin is a coral toxin that seriously impairs heart function, but its effects on excitation-contraction (E-C) coupling have remained elusive. Therefore, we studied the effects of palytoxin on mechanisms involved in atrial E-C coupling. In field-stimulated cat atrial myocytes, palytoxin caused elevation of diastolic intracellular Ca(2+) concentration ([Ca(2+)](i)), a decrease in [Ca(2+)](i) transient amplitude, Ca(2+) alternans followed by [Ca(2+)](i) waves, and failures of Ca(2+) release.
View Article and Find Full Text PDFThe TRPC1 (transient receptor potential canonical-1) channel is a constituent of the nonselective cation channel that mediates Ca2+ entry through store-operated channels (SOCs) in human endothelial cells. We investigated the role of protein kinase Calpha (PKCalpha) phosphorylation of TRPC1 in regulating the opening of SOCs. Thrombin or thapsigargin added to the external medium activated Ca2+ entry after Ca2+ store depletion, which we monitored by changes in cellular Fura 2 fluorescence.
View Article and Find Full Text PDFWe tested the hypothesis that RhoA, a monomeric GTP-binding protein, induces association of inositol trisphosphate receptor (IP3R) with transient receptor potential channel (TRPC1), and thereby activates store depletion-induced Ca2+ entry in endothelial cells. We showed that RhoA upon activation with thrombin associated with both IP3R and TRPC1. Thrombin also induced translocation of a complex consisting of Rho, IP3R, and TRPC1 to the plasma membrane.
View Article and Find Full Text PDFThe effects of moricizine on Na+ channel currents (INa) were investigated in guinea-pig atrial myocytes and its effects on INa in ventricular myocytes and on cloned hH1 current were compared using the whole-cell, patch-clamp technique. Moricizine induced the tonic block of INa with the apparent dissociation constant (Kd,app) of 6.3 microM at -100 mV and 99.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2002
The properties of several components of outward K(+) currents, including the pharmacological and kinetics profiles as well as the respective molecular correlates, have been identified in mouse cardiac myocytes. Surprisingly little is known with regard to the Ca(2+)-activated ionic currents. We studied the Ca(2+)-activated transient outward currents in mouse ventricular myocytes.
View Article and Find Full Text PDF