Publications by authors named "Giardino W"

Psychiatric disorders are multifactorial and effective treatments are lacking. Probable contributing factors to the challenges in therapeutic development include the complexity of the human brain and the high polygenicity of psychiatric disorders. Combining well-powered genome-wide and brain-wide genetics and transcriptomics analyses can deepen our understanding of the etiology of psychiatric disorders.

View Article and Find Full Text PDF

Alcohol use disorder (AUD) is characterized by compulsive alcohol consumption and negative emotional states during withdrawal, often perpetuating a cycle of addiction through arousal dysfunction. The hypocretin/orexin (Hcrt) neuropeptide system, a key regulator of arousal, has been implicated in these processes, particularly in its interactions with corticotropin-releasing factor (CRF) neurons within the bed nucleus of the stria terminalis (BNST). We investigated the role of Hcrt receptor signaling in CRF neurons in modulating alcohol intake, anxiety behaviors, and BNST excitability, with a focus on sex-specific differences.

View Article and Find Full Text PDF

Neuropeptide S (NPS) is a highly conserved peptide found in all tetrapods that functions in the brain to promote heightened arousal; however, the subpopulations mediating these phenomena remain unknown. We generated mice expressing Cre recombinase from the Nps gene locus (Nps) and examined populations of NPS+ neurons in the lateral parabrachial area (LPBA), the peri-locus coeruleus (peri-LC) region of the pons, and the dorsomedial thalamus (DMT). We performed brain-wide mapping of input and output regions of NPS+ clusters and characterized expression patterns of the NPS receptor 1 (NPSR1).

View Article and Find Full Text PDF

Narcolepsy is a sleep disorder characterized by chronic and excessive daytime sleepiness, and sudden intrusion of sleep during wakefulness that can fall into two categories: type 1 and type 2. Type 1 narcolepsy in humans is widely believed to be caused as a result of loss of neurons in the brain that contain the key arousal neuropeptide Orexin (Orx; also known as Hypocretin). Patients with type 1 narcolepsy often also present with cataplexy, the sudden paralysis of voluntary muscles which is triggered by strong emotions (e.

View Article and Find Full Text PDF

Given historical focus on the roles for cholecystokinin (CCK) as a peripheral hormone controlling gastrointestinal processes and a brainstem peptide regulating food intake, the study of CCK as a limbic neuromodulator coordinating reward-seeking and emotional behavior remains underappreciated. Furthermore, localization of CCK to specialized interneurons throughout the hippocampus and cortex relegated CCK to being examined primarily as a static cell type marker rather than a dynamic functional neuromodulator. Yet, over three decades of literature have been generated by efforts to delineate the central mechanisms of addiction-related behaviors mediated by the CCK system across the striatum, amygdala, hypothalamus, and midbrain.

View Article and Find Full Text PDF

The circuitry of addiction comprises several neural networks including the midbrain - an expansive region critically involved in the control of motivated behaviors. Midbrain nuclei like the Edinger-Westphal (EW) and dorsal raphe (DR) contain unique populations of neurons that synthesize many understudied neuroactive molecules and are encircled by the periaqueductal gray (PAG). Despite the proximity of these special neuron classes to the ventral midbrain complex and surrounding PAG, functions of the EW and DR remain substantially underinvestigated by comparison.

View Article and Find Full Text PDF

At the onset of the COVID-19 pandemic, many academic institutions attempted to limit viral spread throughout their communities by suspending face-to-face student instruction. The rapid transition from in-person to remote learning dramatically altered student-instructor interactions and ushered in a new set of educational challenges. Despite recent publications by experienced researchers that address the impacts of remote instruction on undergraduate research at a holistic level, we currently lack evidence for successful implementation of best practices in a remote research environment during the COVID-19 pandemic.

View Article and Find Full Text PDF

Sleep is fundamental to life, and poor sleep quality is linked to the suboptimal function of the neural circuits that process and respond to emotional stimuli. Wakefulness ("arousal") is chiefly regulated by circadian and homeostatic forces, but affective mood states also strongly impact the balance between sleep and wake. Considering the bidirectional relationships between sleep/wake changes and emotional dynamics, we use the term "emotional arousal" as a representative characteristic of the profound overlap between brain pathways that: (1) modulate wakefulness; (2) interpret emotional information; and (3) calibrate motivated behaviors.

View Article and Find Full Text PDF

In recognition of the mixed associations between traditionally scored slow wave sleep and memory, we sought to explore the relationships between slow wave sleep, electroencephalographic (EEG) power spectra during sleep and overnight verbal memory retention in older adults. Participants were 101 adults without dementia (52% female, mean age 70.3 years).

View Article and Find Full Text PDF

Decades of research have implicated the ventral tegmental area (VTA) in motivation, learning and reward processing. We and others recently demonstrated that it also serves as an important node in sleep/wake regulation. Specifically, VTA-dopaminergic neuron activation is sufficient to drive wakefulness and necessary for the maintenance of wakefulness.

View Article and Find Full Text PDF

Alcohol use disorder (AUD) is a difficult to treat condition with a significant global public health and cost burden. The nucleus accumbens (NAc) has been implicated in AUD and identified as an ideal target for deep brain stimulation (DBS). There are promising preclinical animal studies of DBS for alcohol consumption as well as some initial human clinical studies that have shown some promise at reducing alcohol-related cravings and, in some instances, achieving long-term abstinence.

View Article and Find Full Text PDF

Study Objectives: The present study investigated the function of Hypocretin (Hcrt or Orexin/OX) receptor antagonists in sleep modulation and memory function with optical methods in transgenic mice.

Methods: We used Hcrt-IRES-Cre knock-in mice and AAV vectors expressing channelrhodopsin-2 (ChR2) to render Hcrt neurons sensitive to blue light stimulation. We optogenetically stimulated Hcrt neurons and measured latencies to wakefulness in the presence or absence of OX1/2R antagonists and Zolpidem.

View Article and Find Full Text PDF

Lateral hypothalamus (LH) neurons containing the neuropeptide hypocretin (HCRT; orexin) modulate affective components of arousal, but their relevant synaptic inputs remain poorly defined. Here we identified inputs onto LH neurons that originate from neuronal populations in the bed nuclei of stria terminalis (BNST; a heterogeneous region of extended amygdala). We characterized two non-overlapping LH-projecting GABAergic BNST subpopulations that express distinct neuropeptides (corticotropin-releasing factor, CRF, and cholecystokinin, CCK).

View Article and Find Full Text PDF

The corticotropin-releasing factor (CRF) system plays a role in alcohol consumption, and its dysregulation can contribute to alcohol use disorder. This system includes four peptide ligands: CRF, urocortin (Ucn)1, Ucn2, and Ucn3. Historically, attention focused on CRF, however, Ucn1 also plays a critical role in excessive alcohol use.

View Article and Find Full Text PDF

Daily, animals need to decide when to stop engaging in cognitive processes and behavioral responses to the environment, and go to sleep. The main processes regulating the daily organization of sleep and wakefulness are circadian rhythms and homeostatic sleep pressure. In addition, motivational processes such as food seeking and predator evasion can modulate sleep/wake behaviors.

View Article and Find Full Text PDF

Midbrain neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) are activated by alcohol, and enriched with stress-responsive neuropeptide modulators (including the paralog of corticotropin-releasing factor, urocortin-1). Evidence suggests that EWcp neurons promote behavioral processes for alcohol-seeking and consumption, but a definitive role for these cells remains elusive. Here we combined targeted viral manipulations and gene array profiling of EWcp neurons with mass behavioral phenotyping in C57BL/6 J mice to directly define the links between EWcp-specific urocortin-1 expression and voluntary binge alcohol intake, demonstrating a specific importance for EWcp urocortin-1 activity in escalation of alcohol intake.

View Article and Find Full Text PDF

How the brain controls vigilance state transitions remains to be fully understood. The discovery of hypocretins, also known as orexins, and their link to narcolepsy has undoubtedly allowed us to advance our knowledge on key mechanisms controlling the boundaries and transitions between sleep and wakefulness. Lack of function of hypocretin neurons (a relatively simple and non-redundant neuronal system) results in inappropriate control of sleep states without affecting the total amount of sleep or homeostatic mechanisms.

View Article and Find Full Text PDF

Dopaminergic ventral tegmental area (VTA) neurons are critically involved in a variety of behaviors that rely on heightened arousal, but whether they directly and causally control the generation and maintenance of wakefulness is unknown. We recorded calcium activity using fiber photometry in freely behaving mice and found arousal-state-dependent alterations in VTA dopaminergic neurons. We used chemogenetic and optogenetic manipulations together with polysomnographic recordings to demonstrate that VTA dopaminergic neurons are necessary for arousal and that their inhibition suppresses wakefulness, even in the face of ethologically relevant salient stimuli.

View Article and Find Full Text PDF

Potassium ion channels in a subset of neurons in the brain of zebrafish may have a role in promoting sleep.

View Article and Find Full Text PDF

Hypocretin (also known as orexin) is a peptide neuromodulator that is expressed exclusively in the lateral hypothalamic area and plays a fundamental role in wakefulness and arousal. Chronic stress and compulsive drug-seeking are two examples of dysregulated states of hyperarousal that are influenced by hypocretin transmission throughout hypothalamic, extended amygdala, brainstem, and mesolimbic pathways. Here, we review current advances in the understanding of hypocretin's modulatory actions underlying conditions of negative and positive emotional valence, focusing particularly on mechanisms that facilitate adaptive (and maladaptive) responses to stressful or rewarding environmental stimuli.

View Article and Find Full Text PDF

Background: Several recent studies implementing the standard "drinking-in-the-dark" (DID) model of short-term binge-like ethanol (EtOH) intake in C57BL/6J mice highlighted a role for the stress-related neuropeptide corticotropin-releasing factor (CRF) and its primary binding partner, the CRF type-1 (CRF1) receptor.

Methods: We evaluated the selectivity of CRF1 involvement in binge-like EtOH intake by interrupting CRF1 function via pharmacological and genetic methods in a slightly modified 2-bottle choice DID model that allowed calculation of an EtOH preference ratio. In addition to determining EtOH intake and preference, we also measured consumption of food and H2 O during the DID period, both in the presence and absence of EtOH and sweet tastant solutions.

View Article and Find Full Text PDF

Addictive disorders are chronic, relapsing conditions that cause extensive disease burden. Genetic factors partly account for susceptibility to addiction, but environmental factors such as stressful experiences and prolonged exposure of the brain to addictive drugs promote its development. Progression to addiction involves neuroadaptations within neurocircuitry that mediates stress responses and is influenced by several peptidergic neuromodulators.

View Article and Find Full Text PDF

It is widely accepted that stress, anxiety, depression and alcohol abuse-related disorders are in large part controlled by corticotropin-releasing factor (CRF) receptors. However, evidence is accumulating that some of the actions on these receptors are mediated not by CRF, but by a family of related Urocortin (Ucn) peptides Ucn1, Ucn2 and Ucn3. The initial narrow focus on CRF as the potential main player acting on CRF receptors appears outdated.

View Article and Find Full Text PDF

Detailed examination of the midbrain Edinger-Westphal (EW) nucleus revealed the existence of two distinct nuclei. One population of EW preganglionic (EWpg) neurons was found to control oculomotor functions, and a separate population of EW centrally projecting (EWcp) neurons was found to contain stress- and feeding-related neuropeptides. Although it has been shown that EWcp neurons are highly responsive to drugs of abuse and behavioral stress, a genetic characterization of the EWcp was needed.

View Article and Find Full Text PDF