Which aspects of our sensory environment enter conscious awareness does not only depend on physical features of the stimulus, but also critically on the so-called current brain state. Results from magnetoencephalography/EEG studies using near-threshold stimuli have consistently pointed to reduced levels of α- (8-12 Hz) power in relevant sensory areas to predict whether a stimulus will be consciously perceived or not. These findings have been mainly interpreted in strictly "local" terms of enhanced excitability of neuronal ensembles in respective cortical regions.
View Article and Find Full Text PDFPractice of language tasks results in improved performance and BOLD signal changes. We distinguish changes correlated with repeated exposure to a picture naming task, from changes associated with naming specific items trained during practice. Task practice affected trained and untrained items, yielding left-sided BOLD deactivations in extrastriate, prefrontal and superior temporal areas (consistent with their putative role in perceptual priming, articulatory planning and phonological lexical retrieval, respectively).
View Article and Find Full Text PDF