Virus-induced genome editing (VIGE) leverages viral vectors to deliver CRISPR-Cas components into plants for robust and flexible trait engineering. We describe here a VIGE approach applying an RNA viral vector based on potato virus X (PVX) for genome editing of tomato, a mayor horticultural crop. Viral delivery of single-guide RNA into Cas9-expressing lines resulted in efficient somatic editing with indel frequencies up to 58%.
View Article and Find Full Text PDFInsect physiology and reproduction depend on several terpenoid compounds, whose biosynthesis is mainly unknown. One enigmatic group of insect monoterpenoids are mealybug sex pheromones, presumably resulting from the irregular coupling activity of unidentified isoprenyl diphosphate synthases (IDSs). Here, we performed a comprehensive search for IDS coding sequences of the pest mealybug .
View Article and Find Full Text PDFPrevious work has demonstrated that plants can be used as production platforms for molecules used in health, medicine, and agriculture. Production has been exemplified in both stable transgenic plants and using transient expression strategies. In particular, species of Nicotiana have been engineered to produce a range of useful molecules, including insect sex pheromones, which are valued for species-specific control of agricultural pests.
View Article and Find Full Text PDFPlant biofactories are a promising platform for sustainable production of high-value compounds, among which are insect sex pheromones, a green alternative to conventional insecticides in agriculture. Recently, we have constructed transgenic plants ("Sexy Plants", SxP) that successfully produce a blend of moth (Lepidoptera) sex pheromone compounds ()-11-hexadecen-1-ol and ()-11-hexadecenyl acetate. However, efficient biosynthesis of sex pheromones resulted in growth and developmental penalty, diminishing the potential for commercial use of SxP in biomanufacturing.
View Article and Find Full Text PDFGene editing has already proved itself as an invaluable tool for the generation of mutants for crop breeding, yet its ultimate impact on agriculture will depend on how crops generated by gene editing technologies are regulated, and on our ability to characterize the impact of mutations on plant phenotype. A starting operational strategy for evaluating gene editing-based approaches to plant breeding might consist of assessing the effect of the induced mutations in a crop- and locus-specific manner: this involves the analysis of editing efficiency in different cultivars of a crop, the assessment of potential off-target mutations, and a phenotypic evaluation of edited lines carrying different mutated alleles. Here, we targeted the () locus in two tomato cultivars ('MoneyMaker' and 'San Marzano') and evaluated the efficiency, specificity and mutation patterns associated with CRISPR/Cas9 activity for this gene.
View Article and Find Full Text PDFTranscriptional regulators based on CRISPR architecture expand our ability to reprogramme endogenous gene expression in plants. One of their potential applications is the customization of plant metabolome through the activation of selected enzymes in a given metabolic pathway. Using the previously described multiplexable CRISPR activator dCasEV2.
View Article and Find Full Text PDFPlant-based bioproduction of insect sex pheromones has been proposed as an innovative strategy to increase the sustainability of pest control in agriculture. Here, we describe the engineering of transgenic plants producing -11-hexadecenol (Z11-16OH) and -11-hexadecenyl acetate (Z11-16OAc), two main volatile components in many Lepidoptera sex pheromone blends. We assembled multigene DNA constructs encoding the pheromone biosynthetic pathway and stably transformed them into plants.
View Article and Find Full Text PDFIn the genus, triterpene saponins are a group of bioactive compounds extensively studied for their different biological and pharmaceutical properties. In this work, the CRISPR/Cas9-based approach with two single-site guide RNAs was used in (barrel medic) to knock-out the and genes, which are responsible for the biosynthesis of soyasapogenol B, the most abundant soyasapogenol in spp. No transgenic plants carrying mutations in the target gene were recovered while fifty-two putative mutant plant lines were obtained following -mediated transformation.
View Article and Find Full Text PDFThe current CoVid-19 crisis is revealing the strengths and the weaknesses of the world's capacity to respond to a global health crisis. A critical weakness has resulted from the excessive centralization of the current biomanufacturing capacities, a matter of great concern, if not a source of nationalistic tensions. On the positive side, scientific data and information have been shared at an unprecedented speed fuelled by the preprint phenomena, and this has considerably strengthened our ability to develop new technology-based solutions.
View Article and Find Full Text PDFPolyphenol oxidases (PPOs) catalyze the oxidization of polyphenols, which in turn causes the browning of the eggplant berry flesh after cutting. This has a negative impact on fruit quality for both industrial transformation and fresh consumption. Ten genes (named -) were identified in eggplant thanks to the recent availability of a high-quality genome sequence.
View Article and Find Full Text PDFSynthetic biology has advanced from the setup of basic genetic devices to the design of increasingly complex gene circuits to provide organisms with new functions. While many bacterial, fungal and mammalian unicellular chassis have been extensively engineered, this progress has been delayed in plants due to the lack of reliable DNA parts and devices that enable precise control over these new synthetic functions. In particular, memory switches based on DNA site-specific recombination have been the tool of choice to build long-term and stable synthetic memory in other organisms, because they enable a shift between two alternative states registering the information at the DNA level.
View Article and Find Full Text PDFDNA methylation through the activity of cytosine-5-methyltransferases (C5-MTases) and DNA demethylases plays important roles in genome protection as well as in regulating gene expression during plant development and plant response to environmental stresses. In this study, we report on a genome-wide identification of six C5-MTases (SmelMET1, SmelCMT2, SmelCMT3a, SmelCMT3b, SmelDRM2, SmelDRM3) and five demethylases (SmelDemethylase_1, SmelDemethylase_2, SmelDemethylase_3, SmelDemethylase_4, SmelDemethylase_5) in eggplant. Gene structural characteristics, chromosomal localization and phylogenetic analyses are also described.
View Article and Find Full Text PDFThe CRISPR/Cas12a editing system opens new possibilities for plant genome engineering. To obtain a comparative assessment of RNA-guided endonuclease (RGEN) types in plants, we adapted the CRISPR/Cas12a system to the GoldenBraid (GB) modular cloning platform and compared the efficiency of Acidaminococcus (As) and Lachnospiraceae (Lb) Cas12a variants with the previously described GB-assembled Streptococcus pyogenes Cas9 (SpCas9) constructs in eight Nicotiana benthamiana loci using transient expression. All three nucleases showed drastic target-dependent differences in efficiency, with LbCas12 producing higher mutagenesis rates in five of the eight loci assayed, as estimated with the T7E1 endonuclease assay.
View Article and Find Full Text PDFChanges to the cytosine methylation status of DNA, driven by the activity of C5 methyltransferases (C5-MTases) and demethylases, exert an important influence over development, transposon movement, gene expression and imprinting. Three groups of C5-MTase enzymes have been identified in plants, namely MET (methyltransferase 1), CMT (chromomethyltransferases) and DRM (domains rearranged methyltransferases). Here the repertoire of genes encoding C5-MTase and demethylase by the globe artichoke (Cynara cardunculus var.
View Article and Find Full Text PDFSaccharomyces cerevisiae has been proven to be a valuable tool for the expression of plant metabolic pathways. By engineering a S. cerevisiae strain with two plant genes (4cl-2 from tobacco and hct from globe artichoke) we previously set up a system for the production of two novel phenolic compounds, N-(E)-p-coumaroyl-3-hydroxyanthranilic acid (Yeast avenanthramide I, Yav I) and N-(E)-caffeoyl-3-hydroxyanthranilic acid (Yeast avenanthramide II, Yav II).
View Article and Find Full Text PDFThe optimal concentration of a human placental polydeoxyribonucleotide (PDRN) preparation (100 microg/ml) enhances the growth of human corneal fibroblasts in primary culture depending upon the donor age. In particular, this effect is very consistently reproducible with donors over 60 years of age (p = 0.0028), suggesting a selective benefit of PDRN in the tissue culture of senescent cells.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
June 2001
It is well-established that hormones have multiple effects on breast cancer. Some, but not all studies indicate that the phase of the menstrual cycle (and hence hormonal status) at the time of breast surgery may influence survival. In this paper we review the literature in this area, explore how it is possible that such an association may occur, and note that randomised studies which unambiguously determined the phase of the cycle at the time of the operation are lacking.
View Article and Find Full Text PDFA simple assay capable of evaluating the trophic effect of growth factors or active principles on human skin diploid fibroblasts in primary culture has been developed. The results indicate that at physiological concentrations (20-100 micrograms/ml) a human placental polydeoxyribonucleotide (PDRN) preparation enhances the growth of human skin diploid fibroblasts of the knee in primary culture. This effect is consistently reproducible in the case of patients over 60 years of age, and may explain previously reported data on the successful clinical applications of human placental preparations, suggesting a selective benefit of PDRN in wound healing when compared to other treatments.
View Article and Find Full Text PDF