Murine trophoblast stem (TS) cells express fibroblast growth factor receptor 2 (FGFR2) and are maintained in their proliferative state by fibroblast growth factor 4 (FGF4). We show in this report that in the first trimester human placenta FGFR2 expression is similarly found in a subset of villous cytotrophoblast and in proximal anchoring columns. Western analysis demonstrated declining FGFR2 protein expression as gestation advanced, suggesting a similar role for FGF in early human trophoblast proliferation.
View Article and Find Full Text PDFProstaglandins (PGs) play a central role in primate parturition by their actions on uterine contractility and on cervical ripening. Rhesus monkey placentation is hemochorial and the endocrine events surrounding parturition are qualitatively similar to human pregnancy. Although there is an increase in PG production before the onset of labor, little is known about the cellular localization of the PGH synthase (PGHS) or the 15-hydroxy PG dehydrogenase (PGDH) in the fetal membranes of nonhuman primates and whether it changes at term in spontaneous labor or during preterm labor associated with infection.
View Article and Find Full Text PDFHere we have examined the enzymes cyclooxygenase (COX)-2 and 15-hydroxyprostaglandin dehydrogenase (15-OH PGDH) in pregnant human cervix. In biopsies taken transvaginally after preterm and term elective cesarean sections and vaginal deliveries, the levels of mRNA coding for COX-2 and 15-OH PGDH were assessed by Northern blotting. The cellular localization of the COX-2 and 15-OH PGDH proteins was determined by immunohistochemical analysis.
View Article and Find Full Text PDFProstaglandins (PGs) act as potent uterotonins at the time of labor. Prostaglandin E synthase (PGES) is responsible for the formation of PGE(2), a uterotonin. PGI(2) is synthesized by the prostaglandin I synthase enzyme (PGIS) and contributes to relaxation in the lower uterine segment.
View Article and Find Full Text PDFProstaglandins (PGs) play a key role in the onset of labor in many species and regulate uterine contractility and cervical dilatation. Therefore, the regulation of prostaglandin output by PG synthesizing (PGHS-I and PGHS-II) and metabolizing (PGDH) enzymes in the human myometrium may determine uterine activity patterns in human labor both at preterm and at term. We hypothesized that expression of PGHS isozymes and PGDH in myometrium from women at preterm and term labor would change to favor increased uterotonin (PG) production.
View Article and Find Full Text PDF