Publications by authors named "Gianni Cazzaniga"

Article Synopsis
  • PI4KA-related disorder is marked by a variety of neurological and gastrointestinal issues, including spasticity, developmental challenges, and recurrent infections, with specific attention given to the impact on B-cell function and immunodeficiency in some patients. * -
  • The study involved analyzing 13 patients with PI4KA variants, revealing common traits such as B-cell deficiency and hypogammaglobulinemia, alongside significant changes in B-cell subsets and functioning due to metabolic disruptions. * -
  • Findings indicate that mutations in PI4KA lead to disturbances in lipid production and metabolic pathways in B cells, fostering mitochondrial dysfunction and abnormal immune responses, suggesting a critical role of PI4KA in B-cell differentiation and health. *
View Article and Find Full Text PDF

Biallelic KARS1 mutations cause KARS-related diseases, a rare syndromic condition encompassing central and peripheral nervous system impairment, heart and liver disease, and deafness. KARS1 encodes the t-RNA synthase of lysine, an aminoacyl-tRNA synthetase, involved in different physiological mechanisms (such as angiogenesis, post-translational modifications, translation initiation, autophagy and mitochondrial function). Although patients with immune-hematological abnormalities have been individually described, results have not been collectively discussed and functional studies investigating how KARS1 mutations affect B cells have not been performed.

View Article and Find Full Text PDF

Aberrant activation of the Hh pathway promotes cell proliferation and multi-drug resistance (MDR) in several cancers, including Acute Myeloid Leukemia (AML). Notably, only one Hh inhibitor, glasdegib, has been approved for AML treatment, and most patients eventually relapse, highlighting the urgent need to discover new therapeutic targets. Hh signal is transduced through the membrane of the primary cilium, a structure expressed by non-proliferating mammalian cells, whose stabilization depends on the activity of HDAC6.

View Article and Find Full Text PDF

Somatic loss of function mutations in cohesin genes are frequently associated with various cancer types, while cohesin disruption in the germline causes cohesinopathies such as Cornelia-de-Lange syndrome (CdLS). Here, we present the discovery of a recurrent heterozygous germline aberration at amino acid position 298 (p.P298S/A) identified in three children with lymphoblastic leukemia or lymphoma in a total dataset of 482 pediatric cancer patients.

View Article and Find Full Text PDF

Unlabelled: Chimeric antigen receptor T-cells (CAR T-cells) for the treatment of relapsing/refractory B-cell precursor acute lymphoblastic leukemia have led to exciting clinical results. However, CAR T-cell approaches revealed a potential risk of CD19-/CAR+ leukemic relapse due to inadvertent transduction of leukemia cells.

Background: METHODS: We evaluated the impact of a high percentage of leukemia blast contamination in patient-derived starting material (SM) on CAR T-cell drug product (DP) manufacturing.

View Article and Find Full Text PDF

Agammaglobulinemia is the most profound primary antibody deficiency that can occur due to an early termination of B-cell development. We here investigated 3 novel patients, including the first known adult, from unrelated families with agammaglobulinemia, recurrent infections, and hypertrophic cardiomyopathy (HCM). Two of them also presented with intermittent or severe chronic neutropenia.

View Article and Find Full Text PDF

Detection of minimal residual disease (MRD) pre- and post-hematopoietic cell transplantation (HCT) for pediatric acute lymphoblastic leukemia (ALL) has been associated with relapse and poor survival. Published studies have had insufficient numbers to: (1) compare the prognostic value of pre-HCT and post-HCT MRD; (2) determine clinical factors post-HCT associated with better outcomes in MRD+ patients; and (3) use MRD and other clinical factors to develop and validate a prognostic model for relapse in pediatric patients with ALL who undergo allogeneic HCT. To address these issues, we assembled an international database including sibling (n = 191), unrelated (n = 259), mismatched (n = 56), and cord blood (n = 110) grafts given after myeloablative conditioning.

View Article and Find Full Text PDF

ABL-class fusions other than characterize around 2-3% of precursor B-cell acute lymphoblastic leukemia. Case series indicated that patients suffering from these subtypes have a dismal outcome and may benefit from the introduction of tyrosine kinase inhibitors. We analyzed clinical characteristics and outcome of 46 ABL-class fusion positive cases other than treated according to AIEOP-BFM (Associazione Italiana di Ematologia-Oncologia Pediatrica-Berlin-Frankfurt-Münster) ALL 2000 and 2009 protocols; 13 of them received a tyrosine kinase inhibitor (TKI) during different phases of treatment.

View Article and Find Full Text PDF

The BCR-ABL1 fusion protein is the cause of chronic myeloid leukemia (CML) and of a significant fraction of adult-onset B cell acute lymphoblastic leukemia (B-ALL) cases. Using mouse models and patient-derived samples, we identified an essential role for γ-catenin in the initiation and maintenance of BCR-ABL1 B-ALL but not CML. The selectivity was explained by a partial γ-catenin dependence of MYC expression together with the susceptibility of B-ALL, but not CML, to reduced MYC levels.

View Article and Find Full Text PDF

IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in both childhood and adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Previously, we revealed that COBL is a hotspot for breakpoints in leukemia and could promote IKZF1 deletions. Through an international collaboration, we provide a detailed genetic and clinical picture of B-ALL with COBL rearrangements (COBL-r).

View Article and Find Full Text PDF

B-cell acute lymphoblastic leukemia is the commonest childhood cancer. In infants, B-cell acute lymphoblastic leukemia remains fatal, especially in patients with t(4;11), present in ~80% of cases. The pathogenesis of t(4;11)/KMT2A-AFF1 (MLL-AF4) infant B-cell acute lymphoblastic leukemia remains difficult to model, and the pathogenic contribution in cancer of the reciprocal fusions resulting from derivative translocated-chromosomes remains obscure.

View Article and Find Full Text PDF
Article Synopsis
  • The nucleophosmin 1 gene (NPM1) is the most commonly mutated gene in acute myeloid leukemia (AML) and often occurs alongside other mutations in cohesin genes.
  • In a study of adult AML patients, a specific reduction in a cohesin gene's expression was observed in those with NPM1 mutations, which was also reflected in a zebrafish model.
  • The research indicated that downregulating the targeted cohesin gene led to increased myeloid progenitors due to hyper-activation of the Wnt signaling pathway, suggesting a complex relationship between NPM1 mutations and myeloid cell differentiation.*
View Article and Find Full Text PDF

In Shwachman-Diamond syndrome (SDS), deletion of the long arm of chromosome 20, del(20)(q), often acquired in bone marrow (BM), may imply a lower risk of developing myelodysplastic syndrome/acute myeloid leukaemia (MDS/AML), due to the loss of the EIF6 gene. The genes L3MBTL1 and SGK2, also on chromosome 20, are in a cluster of imprinted genes, and their loss implies dysregulation of BM function. We report here the results of array comparative genomic hybridization (a-CGH) performed on BM DNA of six patients which confirmed the consistent loss of EIF6 gene.

View Article and Find Full Text PDF

Cornelia de Lange syndrome (CdLS), which is reported to affect ∼1 in 10 000 to 30 000 newborns, is a multisystem organ developmental disorder with relatively mild to severe effects. Among others, intellectual disability represents an important feature of this condition. CdLS can result from mutations in at least five genes: nipped-B-like protein, structural maintenance of chromosomes 1A, structural maintenance of chromosomes 3, RAD21 cohesin complex component and histone deacetylase 8 (HDAC8).

View Article and Find Full Text PDF

Previous retroviral and knock-in approaches to model human t(11;19) acute mixed-lineage leukemia in mice resulted in myeloproliferation and acute myeloid leukemia not fully recapitulating the human disease. The authors established a doxycycline (DOX)-inducible transgenic mouse model "" in which induction in long-term hematopoietic stem cells, lymphoid primed multipotent progenitor cells, multipotent progenitors (MPP4) but not in more committed myeloid granulocyte-macrophage progenitors led to a fully reversible acute leukemia expressing myeloid and B-cell markers. leukemic cells generally expressed lower mRNA than those obtained after retroviral transduction.

View Article and Find Full Text PDF

-rearranged acute lymphoblastic leukemia (ALL) occurring in infants is a rare but very aggressive leukemia, typically associated with a dismal prognosis. Despite the development of specific therapeutic protocols, infant patients with -rearranged ALL still suffer from a low cure rate. At present, novel therapeutic approaches are urgently needed.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) is the first neoplasm where the assessment of early response to therapy by minimal residual disease (MRD) monitoring has proven to be a fundamental tool for guiding therapeutic choices. In recent years, thanks to real-time quantitative PCR (qPCR), MRD monitoring has further achieved higher levels of sensitivity and standardization. However, some outstanding issues still remain to be addressed and emerging technologies hold the promise of improving MRD detection in ALL patients.

View Article and Find Full Text PDF

Analysis and interpretation of Ig and TCR gene rearrangements in the conventional, low-throughput way have their limitations in terms of resolution, coverage, and biases. With the advent of high-throughput, next-generation sequencing (NGS) technologies, a deeper analysis of Ig and/or TCR (IG/TR) gene rearrangements is now within reach, which impacts on all main applications of IG/TR immunogenetic analysis. To bridge the generation gap from low- to high-throughput analysis, the EuroClonality-NGS Consortium has been formed, with the main objectives to develop, standardize, and validate the entire workflow of IG/TR NGS assays for 1) clonality assessment, 2) minimal residual disease detection, and 3) repertoire analysis.

View Article and Find Full Text PDF