Publications by authors named "Gianni Cardini"

We present here an extension of our recently developed PBE-QIDH/DH-SVPD basis set to halogen atoms, with the aim of obtaining, for weakly interacting halogenated molecules, interaction energies close to those provided by a large basis set (def2-TZVPP) coupled to empirical dispersion potential. The core of our approach is the split-valence basis set, DH-SVPD, that has been developed for F, Cl, Br, and I atoms using a self-consistent formula, containing only energy terms computed for dimers and the corresponding monomers at the same level of theory. The basis set developed considering four systems, one for each halogen atoms, has been then tested on the X40, X4 × 10 benchmarks as well as on other two, less standard, data sets.

View Article and Find Full Text PDF

The standard GAFF2 force field parameterization has been refined for the fluorinated alcohols 2,2,2-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), and 1,1,1,3,3,3-hexafluoropropan-2-one (HFA), which are commonly used to study proteins and peptides in biomimetic media. The structural and dynamic properties of both proteins and peptides are significantly influenced by the biomimetic environment created by the presence of these cosolvents in aqueous solutions. Quantum mechanical calculations on stable conformers were used to parameterize the atomic charges.

View Article and Find Full Text PDF

The double proton transfer (PT) reaction has been investigated in the [2,2'-bipyridyl]-3-3'-diol, a complex molecule where the proton movements is coupled to significant rearrangement of the electronic structure. Moreover, the reaction could be concerted, that is the two protons are exchanged simultaneously, or stepwise, where the two protons are transferred sequentially. To this end, a static exploration of the potential energy surface (PES) was carried together with the analysis of the free-energy surface (FES), both surfaces being evaluated at density functional theory level and different exchange-correlation functionals.

View Article and Find Full Text PDF

A detailed understanding and interpretation of absorption spectra of molecular systems, especially in condensed phases, requires computational models that allow their structural and electronic features to be connected to the observed macroscopic spectra. This work is focused on modeling the electronic absorption spectrum of a fluorescent probe, namely, the 9-(4-((bis(2-((2-(ethylthio)ethyl)thio)ethyl)amino)methyl)phenyl)-6-(pyrrolidin-1-yl)-3-xanthen-3-one molecule, depicted by a combined classical-quantum chemical approach. Particularly, first classical molecular dynamics (MD) has been used to explore the configurational space, and next, the absorption spectrum has been reconstructed by averaging the results of time-dependent density functional theory (TD-DFT) calculations performed on equispaced molecular conformations extracted from MD to properly sample the configurational space explored at finite temperature.

View Article and Find Full Text PDF

Hypothesis: The study of Amorphous Calcium Phosphate (ACP) has become a hot topic due to its relevance in living organisms and as a material for biomedical applications. The preparation and characterization of Mg-substituted ACP nanoparticles (AMCP) with tunable Ca/Mg ratio is reported in the present study to address the effect of Mg on their structure and stability.

Experiments: AMCPs particles were synthesized by precipitation of the precursors from aqueous solutions.

View Article and Find Full Text PDF

The structural and vibrational properties of the molecular units of sulfur hexafluoride crystal as a function of pressure have been studied by the Extreme Pressure Polarizable Continuum Model (XP-PCM) method. Within the XP-PCM model, single molecule calculations allow a consistent interpretation of the experimental measurements when considering the effect of pressure on both the molecular structure and the vibrational normal modes. This peculiar aspect of XP-PCM provides a detailed description of the electronic origin of normal modes variations with pressure, via the curvature of the potential energy surface and via the anharmonicity of the normal modes.

View Article and Find Full Text PDF

The regioselectivity in the 1,3-dipolar cycloaddition (1,3-DC) between five-membered cyclic nitrone and methylenecyclopropane (MCP) has been studied through density functional theory (DFT) calculations. The computational study of 1,3-DC with different 1-alkyl- (or 1,1-dialkyl)-substituted alkenes and the comparison with MCP have evidenced that the electrostatic interaction has a central role in the regioselectivity of the reactions. It has been observed that the electronic effect of the substituent (donor or attractor groups) determines the polarization of the alkene double bond and the reaction mechanism, consequently determining the interaction with nitrones and favoring an orientation between this moiety and the dipolarophile.

View Article and Find Full Text PDF

Water has a fundamental role in important processes spanning a wide range of pressure and temperature conditions. Knowledge of structural, dynamic and thermodynamic properties of water at nonstandard conditions is a primary concern since interest in astronomical, geological, and technological processes is continuously growing. Molecular dynamics simulations allow us to study thermodynamic conditions that require sophisticated techniques and instruments, while at the same time offering the interpretation of properties at the atomic level.

View Article and Find Full Text PDF

The complete path of the Brandi-Guarna rearrangement of 5-spirocyclopropane isoxazolidines has been investigated by means of density functional theory calculations to rationalize the competing formation of tetrahydropyridones and enaminones by the determination of the minimum energy reaction paths. Our calculations confirm that the rearrangement is triggered by the homolysis of the isoxazolidine N-O bond followed by cleavage of one of the two C-CH cyclopropane bonds as previously proposed by the Fabian group [ Eur. J.

View Article and Find Full Text PDF

The structural and dynamic properties of imidazole in aqueous solution have been studied by means of classical and ab initio molecular dynamics simulations. We developed a new force field for the imidazole molecule with improved modeling of the electrostatic interactions, specifically tailored to address the well-known drawbacks of existing force fields based on the atomic fractional charge approach. To this end, we reparametrized the charge distribution on the heterocyclic ring, introducing an extra site accounting for the lone pair on the deprotonated nitrogen.

View Article and Find Full Text PDF

The spectroscopic properties of AsS with pressure have been computed by the quantum mechanical XP-PCM method and by density functional theory periodic calculations. The comparison has allowed the interpretation of the available experimental data. By comparison of the two methods and with experiments, we show that the XP-PCM method is able to reproduce the same behavior of the periodic calculations with much lower computational cost allowing to be adopted as a first choice computational tool for a qualitative interpretation of molecular crystals properties under pressure.

View Article and Find Full Text PDF

The fast-switching decoupling method is a powerful nonequilibrium technique to compute absolute binding free energies of ligand-receptor complexes (Sandberg et al., J. Chem.

View Article and Find Full Text PDF

The structure and the vibrational properties of the P4S3 crystal at high pressures are discussed by application of the XP-PCM method. The vibrational assignment has been clarified. The structure and the electron distribution changes as a function of pressure are analyzed.

View Article and Find Full Text PDF

An important issue concerning computer simulations addressed to free energy estimates via nonequilibrium work theorems, such as the Jarzynski equality [Phys. Rev. Lett.

View Article and Find Full Text PDF

A simulation-based approach is proposed to estimate free energy differences between configurational states A and B, defined in terms of collective coordinates of the molecular system. The computational protocol is organized into three stages that can be carried on simultaneously. Two of them consist of independent simulations aimed at sampling, in turn, A and B states.

View Article and Find Full Text PDF

Generalized-ensemble simulations, such as replica exchange and serial generalized-ensemble methods, are powerful simulation tools to enhance sampling of free energy landscapes in systems with high energy barriers. In these methods, sampling is enhanced through instantaneous transitions of replicas, i.e.

View Article and Find Full Text PDF

Di(oxymethylene)glycol forms in formaldehyde aqueous solutions by polymerization of methanediol. The structure and hydrogen bond interactions of di(oxymethylene)glycol with water were characterized by performing Car-Parrinello molecular dynamics simulations. The anharmonic vibrational frequencies of di(oxymethylene)glycol in solution were determined with ab initio calculations considering explicitly the hydrogen-bonded water molecules, while other interactions with solvent were described within a polarizable continuum model approach.

View Article and Find Full Text PDF

Annealed importance sampling is a simulation method devised by Neal [Stat. Comput. 11, 125 (2001)] to assign weights to configurations generated by simulated annealing trajectories.

View Article and Find Full Text PDF

The structural, electronic, and spectroscopic properties of methanediol in aqueous solutions have been studied by a combined approach based on Car-Parrinello molecular dynamics simulations and ab initio calculations. The hydrogen bond interactions between the solute and water have been characterized, showing the important role of the solvent in the stabilization of the methanediol conformers in solution. First insights on the experimental vibrational spectra have been obtained by the analysis of the simulation results, with particular regard to the most prominent band at 1050 cm(-1) that has been attributed to both the symmetric and antisymmetric CO stretching modes.

View Article and Find Full Text PDF

The equilibrium geometry structural and vibrational spectroscopic properties of fullerenes C60 and C70 under high pressure have been studied with a quantum-chemical computational approach in which ab initio calculations on a single fullerene molecule have been carried out within the polarizable continuum model framework to mimic pressure effects. The adopted approach has been revealed effective to explain the geometry variations and the frequency shifts observed experimentally.

View Article and Find Full Text PDF

An important limitation of unidirectional nonequilibrium simulations is the amount of realizations of the process necessary to reach suitable convergence of free energy estimates via Jarzynski's relationship [C. Jarzynski, Phys. Rev.

View Article and Find Full Text PDF

We propose a path-breaking route to the enhancement of unidirectional nonequilibrium simulations for the calculation of free energy differences via Jarzynski's equality [C. Jarzynski, Phys. Rev.

View Article and Find Full Text PDF