Scalability presents a central platform challenge for the components of current quantum network implementations that can be addressed by microfabrication techniques. We demonstrate a high-bandwidth optical memory using a warm alkali atom ensemble in a microfabricated vapor cell compatible with wafer-scale fabrication. By applying an external tesla-order magnetic field, we explore a novel ground-state quantum memory scheme in the hyperfine Paschen-Back regime, where individual optical transitions can be addressed in a Doppler-broadened medium.
View Article and Find Full Text PDFWe present an efficient and robust source of photons at the Rb D1-line (795 nm) with a narrow bandwidth of δ = 226(1) MHz. The source is based on non-degenerate, cavity-enhanced spontaneous parametric down-conversion in a monolithic optical parametric oscillator far below threshold. The setup allows for efficient coupling to single mode fibers.
View Article and Find Full Text PDFQuantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δf=0.
View Article and Find Full Text PDF