Publications by authors named "Gianneschi N"

Article Synopsis
  • Exposure to nitrogen mustard, a type of chemotherapy, causes skin damage and inflammation due to the recruitment of immune cells that worsen the injury and hinder healing.
  • Administering poly(lactic-co-glycolic acid) immune-modifying nanoparticles (PLGA-IMPs) right after exposure can reduce harmful immune cell accumulation in the skin and improve healing outcomes.
  • PLGA-IMPs promote the presence of regulatory T cells that help control inflammation by producing key anti-inflammatory cytokines, suggesting a potential treatment strategy for severe skin injuries.
View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that blocking the interaction between valosin-containing protein (VCP) and mutant huntingtin (mtHtt) can help prevent mitochondrial damage in Huntington's disease models.
  • A newly developed protein-like polymer (PLP) has shown effectiveness in cellular and animal models, significantly inhibiting mitochondrial destruction and proving more stable than control oligopeptides.
  • PLP has a remarkably longer circulation half-life (152 hours) and outperforms free peptide in efficacy tests, suggesting it could be a promising platform for developing treatments for central nervous system disorders.
View Article and Find Full Text PDF

Peptide-brush polymers generated by graft-through living polymerization of peptide-modified monomers exhibit high proteolytic stability, therapeutic efficacy, and potential as functional tandem repeat protein mimetics. Prior work has focused on polymers generated from structurally disordered peptides that lack defined conformations. To obtain insight into how the structure of these polymers is influenced by the folding of their peptide sidechains, a set of polymers with varying degrees of polymerization was prepared from peptide monomers that adopt α-helical secondary structure for comparison to those having random coil structures.

View Article and Find Full Text PDF

We report a systematic analysis of electron beam damage of the zeolitic imidazolate framework (ZIF-8) during liquid cell transmission electron microscopy (LCTEM). Our analysis reveals ZIF-8 morphology is strongly affected by solvent used (water vs dimethylformamide), electron flux applied, and imaging mode (i.e.

View Article and Find Full Text PDF

Bottlebrush polymers, macromolecules consisting of dense polymer side chains grafted from a central polymer backbone, have unique properties resulting from this well-defined molecular architecture. With the advent of controlled radical polymerization techniques, access to these architectures has become more readily available. However, synthetic challenges remain, including the need for intermediate purification, the use of toxic solvents, and challenges with achieving long bottlebrush architectures due to backbone entanglements.

View Article and Find Full Text PDF

Elicitation of effective antitumor immunity following cancer vaccination requires the selective activation of distinct effector cell populations and pathways. Here we report a therapeutic approach for generating potent T cell responses using a modular vaccination platform technology capable of inducing directed immune activation, termed the Protein-like Polymer (PLP). PLPs demonstrate increased proteolytic resistance, high uptake by antigen-presenting cells (APCs), and enhanced payload-specific T cell responses.

View Article and Find Full Text PDF

Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development.

View Article and Find Full Text PDF

Hepatorenal syndrome (HRS) is a life-threatening complication of end-stage liver disease first reported over a century ago, but its management still poses an unmet challenge. A therapeutic agent found to stabilize the condition is a short cyclic peptide, vasopressin analogue, terlipressin (TP). While TP is commonly prescribed for HRS patients in most parts of the world, it was only recently approved for use in the United States.

View Article and Find Full Text PDF

While intensive studies have focused on the synthesis and characterization of new metal-organic nanotube (MONT) structures, the lack of size and morphology control remains an obstacle in broadening applications for this class of materials. Herein, we demonstrate control of MONT crystallite size and morphology by tuning polarity and the protic/aprotic nature of solvents, including dimethylformamide, -methyl-2-pyrrolidone, ethanol, and 2-methyltetrahydrofuran, for the isostructural syntheses of two MONTs. Through a combination of transmission electron microscopy, powder X-ray diffraction, and selected area electron diffraction, we find that MONT crystallite sizes can be tuned while maintaining control over the relative dispersity without significantly altering the underlying crystal structure.

View Article and Find Full Text PDF

Eumelanins play a crucial role as photoprotective agents for living organisms, yet the nature of the stationary and transient species involved in the light absorption and deactivation processes remains controversial. Moreover, the critical sub-100 fs time scale, which is key to the characterization of the primary excited species, has remained unexplored. Here, we study the eumelanin analogue polydopamine (PDA) and employ a combination of steady-state and transient optical spectroscopies to reveal the presence of spectrally broad coupled electronic transitions with, at least partial, charge-transfer (CT) character.

View Article and Find Full Text PDF

A key challenge underlying the design of miniature machines is encoding materials with time- and space-specific functional behaviors that require little human intervention. Dissipative processes that drive materials beyond equilibrium and evolve continuously with time and location represent one promising strategy to achieve such complex functions. This work reports how internal nonequilibrium states of liquid crystal (LC) emulsion droplets undergoing chemotaxis can be used to time the delivery of a chemical agent to a targeted location.

View Article and Find Full Text PDF

Organophosphorus chemicals, including chemical warfare agents (CWAs) and insecticides, are acutely toxic materials that warrant capture and degradation. Metal-organic frameworks (MOFs) have emerged as a class of tunable, porous, crystalline materials capable of hydrolytically cleaving, and thus detoxifying, several organophosphorus nerve agents and their simulants. One such MOF is M-MFU-4l (M = metal), a bioinspired azolate framework whose metal node is composed of a variety of divalent first-row transition metals.

View Article and Find Full Text PDF

Successful and selective inhibition of the cytosolic protein-protein interaction (PPI) between nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associating protein 1 (Keap1) can enhance the antioxidant response, with the potential for a therapeutic effect in a range of settings including in neurodegenerative disease (ND). Small molecule inhibitors have been developed, yet many have off-target effects, or are otherwise limited by poor cellular permeability. Peptide-based strategies have also been attempted to enhance specificity, yet face challenges due to susceptibility to degradation and lack of cellular penetration.

View Article and Find Full Text PDF

In acute skin injury, healing is impaired by the excessive release of reactive oxygen species (ROS). Melanin, an efficient scavenger of radical species in the skin, performs a key role in ROS scavenging in response to UV radiation and is upregulated in response to toxic insult. In a chemical injury model in mice, we demonstrate that the topical application of synthetic melanin particles (SMPs) significantly decreases edema, reduces eschar detachment time, and increases the rate of wound area reduction compared to vehicle controls.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration (nAMD) is the leading cause of blindness in the developed world. Current therapy includes monthly intraocular injections of anti-VEGF antibodies, which are ineffective in up to one third of patients. Thrombospondin-1 (TSP1) inhibits angiogenesis via CD36 binding, and its down-regulated expression is negatively associated with the onset of nAMD.

View Article and Find Full Text PDF
Article Synopsis
  • Polymerization-induced self-assembly (PISA) is an effective method to create block copolymer nanostructures, and using photochemistry can enhance this process.
  • The use of ultrafast photoiniferter PISA helps overcome challenges like chain-end degradation and prolonged reaction times.
  • This approach allows for near-complete conversion of monomers in just five minutes, resulting in diverse polymeric nanostructures such as micelles, worms, and vesicles with adjustable properties.
View Article and Find Full Text PDF

Herein, we have developed a drug-loaded matrix metalloproteinase (MMP)-responsive micellar nanoparticle (NP) intended for minimally invasive intravenous injection during the acute phase of myocardial infarction (MI) and prolonged retention in the heart for small-molecule drug delivery. Peptide-polymer amphiphiles (PPAs) bearing a small-molecule MMP inhibitor (MMPi), PD166793, were synthesized via ring-opening metathesis polymerization (ROMP) and formulated into spherical micelles by transitioning to aqueous solution. The resulting micellar NPs underwent MMP-induced aggregation, demonstrating enzyme responsiveness.

View Article and Find Full Text PDF

ConspectusOrganic, soft materials with solution-phase nanoscale structures, such as emulsions, hydrogels, and thermally responsive materials, are inherently difficult to directly image via dry state and cryogenic-transmission electron microscopy (TEM). Therefore, we lack a routine microscopy method with sufficient resolution that can, in tandem with scattering techniques, probe the morphology and dynamics of these and many related systems. These challenges motivate liquid cell (LC) TEM method development, aimed at making the technique generally available and routine.

View Article and Find Full Text PDF

Chemical and molecular-based computers may be promising alternatives to modern silicon-based computers. In particular, hybrid systems, where tasks are split between a chemical medium and traditional silicon components, may provide access and demonstration of chemical advantages such as scalability, low power dissipation, and genuine randomness. This work describes the development of a hybrid classical-molecular computer (HCMC) featuring an electrochemical reaction on top of an array of discrete electrodes with a fluorescent readout.

View Article and Find Full Text PDF

Diabetes is a global epidemic accompanied by impaired wound healing and increased risk of persistent infections and resistance to standard treatments. Therefore, there is an immense need to develop novel methods to specifically target therapeutics to affected tissues and improve treatment efficacy. This study aims to use enzyme-responsive nanoparticles for the targeted delivery of an anti-inflammatory drug, dexamethasone, to treat inflammation in diabetes.

View Article and Find Full Text PDF

Polymer/metal-organic framework (MOF) composites have been widely studied for their favorable combination of polymer flexibility and MOF crystallinity. While traditional polymer-coated MOFs maximize the polymer properties at the surface, the dramatic loss of MOF porosity due to blockage by the nonporous polymeric coating remains a problem. Herein, we introduce intrinsically microporous synthetic allomelanin (AM) as a porous coating on the zirconium-based MOF (Zr-MOF) UiO-66 via an in situ surface-constrained oxidative polymerization of the AM precursor, 1,8-dihydroxynaphthalene (1,8-DHN).

View Article and Find Full Text PDF

Here, we study the upper critical solution temperature triggered phase transition of thermally responsive poly(ethylene glycol)-block-poly(ethylene glycol) methyl ether acrylate-co-poly(ethylene glycol) phenyl ether acrylate-block-polystyrene nanoassemblies in isopropanol. To gain mechanistic insight into the organic solution-phase dynamics of the upper critical solution temperature polymer, we leverage variable temperature liquid-cell transmission electron microscopy correlated with variable temperature liquid resonant soft X-ray scattering. Heating above the upper critical solution temperature triggers a reduction in particle size and a morphological transition from a spherical core shell particle with a complex, multiphase core to a micelle with a uniform core and Gaussian polymer chains attached to the surface.

View Article and Find Full Text PDF
Article Synopsis
  • Inspired by the vibrant colors of birds, researchers have developed methods to create noniridescent, vivid colors using arrangements of nanoparticles.
  • These nanoparticle assemblies have unique properties influenced by the chemistry and size of the particles, which can be manipulated to achieve specific colors.
  • The researchers utilized advanced computational techniques to analyze the structure and predict colors, demonstrating that they could accurately forecast colors observed in experiments, thus paving the way for creating materials with tailored visual properties efficiently.
View Article and Find Full Text PDF

The interactions between uranium and non-innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium-based metal-organic frameworks (MOFs) offer a new angle to study these interactions, as these self-assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non-innocent linkers.

View Article and Find Full Text PDF