Machine learning analyses are widely used for predicting cognitive abilities, yet there are pitfalls that need to be considered during their implementation and interpretation of the results. Hence, the present study aimed at drawing attention to the risks of erroneous conclusions incurred by confounding variables illustrated by a case example predicting executive function performance by prosodic features. Healthy participants (n = 231) performed speech tasks and EF tests.
View Article and Find Full Text PDFThis work presents data from 148 German native speakers (20-55 years of age), who completed several speaking tasks, ranging from formal tests such as word production tests to more ecologically valid spontaneous tasks that were designed to mimic natural speech. This speech data is supplemented by performance measures on several standardised, computer-based executive functioning (EF) tests covering domains of working-memory, cognitive flexibility, inhibition, and attention. The speech and EF data are further complemented by a rich collection of demographic data that documents education level, family status, and physical and psychological well-being.
View Article and Find Full Text PDF