The extraordinary quantum properties of nonequilibrium systems governed by dissipative dynamics have become a focal point in contemporary scientific inquiry. The nonequilibrium Green's functions (NEGF) theory provides a versatile method for addressing driven nondissipative systems, utilizing the powerful diagrammatic technique to incorporate correlation effects. We here present a second-quantization approach to the dissipative NEGF theory, reformulating Keldysh ideas to accommodate Lindbladian dynamics and extending the Kadanoff-Baym equations accordingly.
View Article and Find Full Text PDFQuantum simulations of photoexcited low-dimensional systems are pivotal for understanding how to functionalize and integrate novel two-dimensional (2D) materials in next-generation optoelectronic devices. First-principles predictions are extremely challenging due to the simultaneous interplay of light-matter, electron-electron, and electron-nuclear interactions. We here present an advanced ab initio many-body method that accounts for quantum coherence and non-Markovian effects while treating electrons and nuclei on equal footing, thereby preserving fundamental conservation laws like the total energy.
View Article and Find Full Text PDFThe interaction of electrons with quantized phonons and photons underlies the ultrafast dynamics of systems ranging from molecules to solids, and it gives rise to a plethora of physical phenomena experimentally accessible using time-resolved techniques. Green's function methods offer an invaluable interpretation tool since scattering mechanisms of growing complexity can be selectively incorporated in the theory. Currently, however, real-time Green's function simulations are either prohibitively expensive due to the cubic scaling with the propagation time or do neglect the feedback of electrons on the bosons, thus violating energy conservation.
View Article and Find Full Text PDFSudden ionisation of a relatively large molecule can initiate a correlation-driven process dubbed charge migration, where the electron density distribution is expected to rapidly move along the molecular backbone. Capturing this few-femtosecond or attosecond charge redistribution would represent the real-time observation of electron correlation in a molecule with the enticing prospect of following the energy flow from a single excited electron to the other coupled electrons in the system. Here, we report a time-resolved study of the correlation-driven charge migration process occurring in the nucleic-acid base adenine after ionisation with a 15-35 eV attosecond pulse.
View Article and Find Full Text PDFThe generalized Kadanoff-Baym ansatz (GKBA) offers a computationally inexpensive approach to simulate out-of-equilibrium quantum systems within the framework of nonequilibrium Green's functions. For finite systems, the limitation of neglecting initial correlations in the conventional GKBA approach has recently been overcome [Karlsson et al., Phys.
View Article and Find Full Text PDFDensity functional theory can be generalized to mixtures of ground and excited states, for the purpose of determining energies of excitations using low-cost density functional approximations. Adapting approximations originally developed for ground states to work in the new setting would fast-forward progress enormously. But, previous attempts have stumbled on daunting fundamental issues.
View Article and Find Full Text PDFPhys Rev Lett
November 2020
We present a computationally efficient method to obtain the spectral function of bulk systems in the framework of steady-state density functional theory (i-DFT) using an idealized scanning tunneling microscope (STM) setup. We calculate the current through the STM tip and then extract the spectral function from the finite-bias differential conductance. The fictitious noninteracting system of i-DFT features an exchange-correlation (XC) contribution to the bias which guarantees the same current as in the true interacting system.
View Article and Find Full Text PDFTime-resolved soft-x-ray photoemission spectroscopy is used to simultaneously measure the ultrafast dynamics of core-level spectral functions and excited states upon excitation of excitons in WSe_{2}. We present a many-body approximation for the Green's function, which excellently describes the transient core-hole spectral function. The relative dynamics of excited-state signal and core levels clearly show a delayed core-hole renormalization due to screening by excited quasifree carriers resulting from an excitonic Mott transition.
View Article and Find Full Text PDFWe use the nonequilibrium Green function (NEGF) method to perform real-time simulations of the ultrafast electron dynamics of photoexcited donor-C complexes modeled by a Pariser-Parr-Pople Hamiltonian. The NEGF results are compared to mean-field Hartree-Fock (HF) calculations to disentangle the role of correlations. Initial benchmarking against numerically highly accurate time-dependent density matrix renormalization group calculations verifies the accuracy of NEGF.
View Article and Find Full Text PDFAn ab initio quantum-classical mixed scheme for the time evolution of electrode-device-electrode systems is introduced to study nuclear dynamics in quantum transport. Two model systems are discussed to illustrate the method. Our results provide the first example of current-induced molecular desorption as obtained from a full time-dependent approach and suggest the use of ac biases as a way to tailor electromigration.
View Article and Find Full Text PDF