The interaction between organic molecules and oxidized catalyst surfaces has frequently been used to study the fuel crossover from the anode to the cathode in direct liquid fuel cells. In such experiments, the oxidized surface is put in contact with the fuel under open circuit conditions, and the evolution of the potential is registered. The open circuit potential (OCP) vs.
View Article and Find Full Text PDFThe oscillatory electro-oxidation of 2-propanol on platinum and platinum-based catalysts has attracted growing attention in recent years due to its importance in the interconversion between chemical and electrical energies. This reaction might proceed with a very high selectivity to acetone, nearly without the formation of carbon dioxide, and the reversibility of the 2-propanol/acetone pair is very appropriate for hydrogen transfer. An important aspect of this system is the ubiquitous emergence of potential oscillations under current control, and it has been pointed out as a problem to be avoided and a primary cause of limitations to the use of 2-propanol in practical devices.
View Article and Find Full Text PDF