Publications by authors named "Gianluca Pozzi"

Regional sea level rise varies from the global average and is influenced by climate variability. We studied sea level anomalies in southern Brazil from 1993 to 2022, finding increasing trend from 1993 to 2022. We used oceanic and atmospheric dynamics to understand the rapid sea level rise.

View Article and Find Full Text PDF

Hole-transporting materials (HTMs) based on the 10H, 10'H-9,9'-spirobi [acridine] core (BSA50 and BSA51) were synthesized, and their electronic properties were explored. Experimental and theoretical studies show that the presence of rigid 3,6-dimethoxy-9H-carbazole moieties in BSA 50 brings about improved hole mobility and higher work function compared to bis(4-methoxyphenyl)amine units in BSA51, which increase interfacial hole transportation from perovskite to HTM. As a result, perovskite solar cells (PSCs) based on BSA50 boost power conversion efficiency (PCE) to 22.

View Article and Find Full Text PDF

A clear case of relationship between the monomer molecular structure and the capability of tuning the morphology of electrodeposited gas bubbles template polymer thin films is shown. To this end, a series of fluorene-bridged dicarbazole derivatives containing either linear or terminally branched polyfluorinated side chains connected to the fluorene subunit were synthesized and their electrochemical properties were investigated. The new compounds underwent electrochemical polymerization over indium tin oxide electrodes to give hydrophobic films with nanostructural and morphological properties strongly dependent on the nature of the side chains.

View Article and Find Full Text PDF

Adaptive optics can improve the performance of optical systems and devices by correcting phase aberrations. While in most applications wavefront sensing is employed to drive the adaptive optics correction, some microscopy methods may require sensorless optimization of the wavefront. In these cases, the correction is performed by describing the aberration as a linear combination of a base of influence functions, optimizing an image quality metric as a function of the coefficients.

View Article and Find Full Text PDF

2D hybrid perovskites (2DP) are versatile materials, whose electronic and optical properties can be tuned through the nature of the organic cations (even when those are seemingly electronically inert). Here, it is demonstrated that fluorination of the organic ligands yields glassy 2DP materials featuring long-lived correlated electron-hole pairs. Such states have a marked charge-transfer character, as revealed by the persistent Stark effect in the form of a second derivative in electroabsorption.

View Article and Find Full Text PDF

Low-dimensional hybrid perovskites have triggered significant research interest due to their intrinsically tunable optoelectronic properties and technologically relevant material stability. In particular, the role of the organic spacer on the inherent structural and optical features in two-dimensional (2D) perovskites is paramount for material optimization. To obtain a deeper understanding of the relationship between spacers and the corresponding 2D perovskite film properties, we explore the influence of the partial substitution of hydrogen atoms by fluorine in an alkylammonium organic cation, resulting in (Lc)PbI and (Lf)PbI 2D perovskites, respectively.

View Article and Find Full Text PDF

Perovskite solar cells have set a new milestone in terms of efficiencies in the thin film photovoltaics category. Long-term stability of perovskite solar cells is of paramount importance but remains a challenging task. The lack of perovskite solar cells stability in real-time operating conditions erodes and impedes commercialization.

View Article and Find Full Text PDF

SnO nanoparticles have been synthesized and used as electron transport material (ETM) in dye sensitized solar cells (DSSCs), featuring two peripherally substituted push-pull zinc phthalocyanines (ZnPcs) bearing electron donating diphenylamine substituents and carboxylic acid anchoring groups as light harvesters. These complexes were designed on the base of previous computational studies suggesting that the integration of secondary amines as donor groups in the structure of unsymmetrical ZnPcs might enhance photovoltaics performances of DSSCs. In the case of TiO-based devices, this hypothesis has been recently questioned by experimental results.

View Article and Find Full Text PDF

Photocatalyzed Giese-type alkylations of C(sp )-H bonds are very attractive reactions in the context of atom-economy in C-C bond formation. The main limitation of such reactions is that when using highly polymerizable olefin acceptors, such as unsubstituted acrylates, acrylonitrile, or methyl vinyl ketone, radical polymerization often becomes the dominant or exclusive reaction pathway. Herein, we report that the polymerization of such olefins is strongly limited or suppressed when combining the photocatalytic activity of benzophenone (BP) with a catalytic amount of Cu(OAc) .

View Article and Find Full Text PDF

The facile functionalization of the fluorene scaffold at the 2,7-positions was utilized to provide access to two soluble carbazole-π-carbazole derivatives CFC-H1 and CFC-F1 featuring fully hydrogenated and polyfluorinated alkyl chains at the 9-position of the fluorene π-bridging unit, respectively. The optical and electrochemical properties of the new dicarbazoles were investigated. Their electrochemical polymerization over Pt and indium tin oxide electrodes allowed the generation of electroactive polymeric films, whose physicochemical characteristics were strongly dependent on the kind of alkyl chain present on the fluorene bridge.

View Article and Find Full Text PDF

A small series of boron-dipyrromethene (BODIPY) dyes, characterized by the presence of multibranched fluorinated residues, were designed and synthesized. The dyes differ in both the position (para-perfluoroalkoxy-substituted phenyl ring or boron functionalization) and number of magnetically equivalent fluorine atoms (27 or 54 fluorine atoms per molecule). Photophysical and crystallographic characterization of the synthesized BODIPYs was carried out to evaluate the effect of the presence of highly fluorinated moieties on the optical and morphological properties of such compounds.

View Article and Find Full Text PDF

Hybrid perovskite solar cells have been capturing an enormous research interest in the energy sector due to their extraordinary performances and ease of fabrication. However, low device lifetime, mainly due to material and device degradation upon water exposure, challenges their near-future commercialization. Here, we synthesized a new fluorous organic cation used as organic spacer to form a low-dimensional perovskite (LDP) with an enhanced water-resistant character.

View Article and Find Full Text PDF

Computational studies have suggested that the integration of secondary amine as donor groups in the structure of unsymmetrical zinc phthalocyanine (ZnPc) should have positive effects on photovoltaic performance, once the molecule is integrated as light harvester in dye sensitized solar cells (DSSCs). Aiming at obtaining experimental confirmation, we synthesized a peripherally substituted push-pull ZnPc bearing three electron donating diphenylamine substituents and a carboxylic acid anchoring group and integrated it as sensitizer in TiO-based DSSCs. Detailed functional characterization of solar energy converting devices resulted in ruling out the original hypothesis.

View Article and Find Full Text PDF

With a power conversion efficiency (PCE) exceeding 22 %, perovskite solar cells (PSCs) have thrilled photovoltaic research. However, the interface behavior is still not understood and is a hot topic of research: different processes occur over a hierarchy of timescales, from femtoseconds to seconds, which makes perovskite interface physics intriguing. Herein, through femtosecond transient absorption spectroscopy with spectral coverage extending into the crucial IR region, the ultrafast interface-specific processes at standard and newly molecularly engineered perovskite interfaces in state-of-the-art PSCs are interrogated.

View Article and Find Full Text PDF

Terpenoids have an essential function in present-day cellular membranes, either as membrane reinforcers in Eucarya and Bacteria or as principal membrane constituents in Archaea. We have shown that some terpenoids, such as cholesterol and α, ω-dipolar carotenoids reinforce lipid membranes by measuring the water permeability of unilamellar vesicles. It was possible to arrange the known membrane terpenoids in a 'phylogenetic' sequence, and a retrograde analysis led us to conceive that single-chain polyprenyl phosphates might have been 'primitive' membrane constituents.

View Article and Find Full Text PDF

A new donor/acceptor (D-A) spiro dye (SCPDT1) featuring two bithiophene units, connected through an sp(3)-hybridized carbon atom, was prepared by a multistep synthetic sequence involving the convenient assembly of the spiro system under mild catalytic conditions. The photocurrent spectrum of dye-sensitized solar cells incorporating SCPDT1 covers the spectral region ranging from 350 to 700 nm and reaches a wide maximum of ~80% in the 420-560 nm range. Power conversion efficiencies of up to 6.

View Article and Find Full Text PDF

It is well known that the selectivity of an ion-selective electrode (ISE) depends on the stoichiometry of the complexes between its ionophore and the target and interfering ions. It is all the more surprising that the possibility for the simultaneous occurrence of multiple target ion complexes with different complex stoichiometries was mostly ignored in the past. Here, we report on the simultaneous formation of 1:1 and 1:2 complexes of a fluorophilic crown ether in fluorous ISE membranes and how this results in what looks like super-Nernstian responses.

View Article and Find Full Text PDF

Manganese(III) complexes of three fluorophilic salen derivatives were used to prepare ion-selective electrodes (ISEs) with ionophore-doped fluorous sensing membranes. Because of their extremely low polarity and polarizability, fluorous media are not only chemically very inert but also solvate potentially interfering ions poorly, resulting in a much improved discrimination of such ions. Indeed, the new ISEs exhibited selectivities for CO(3)(2-) that exceed those of previously reported ISEs based on nonfluorous membranes by several orders of magnitude.

View Article and Find Full Text PDF

Fluorous derivatives of dibenzo-18-crown-6 ether were prepared, and then successfully applied in representative solid-liquid phase transfer catalysis reactions, which were performed in standard organic solvents, such as chlorobenzene and toluene, as well as in fluorous solvents, such as perfluoro-1,3-dimethylcyclohexane. It was clearly shown that properly designed fluoroponytailed crown ethers could promote the disintegration of the crystal lattice of alkali salts, and transfer anions from the solid surface into an apolar, non-coordinating perfluorocarbon phase, for phase transfer catalysis reactions in organic synthesis. Furthermore, 3,5-bis(perfluorooctyl)benzyl bromide and triethylamine were reacted under mild conditions to provide an analogue of the versatile phase transfer catalyst, benzyltriethylammonium chloride, containing two fluoroponytails.

View Article and Find Full Text PDF

Monolayers at the gas/water interface have been used as an adjustable catalytic system in which the molecular density may be modified. Mn(III)-salen complexes bearing perfluoroalkyl substituents have been organized as a Langmuir film on an aqueous subphase containing a urea/hydrogen peroxide adduct (UHP, the oxidant) and cinnamyl alcohol (the substrate). The catalytic activity of the monolayer for the epoxidation of the alkene dissolved in water has been demonstrated and the reaction kinetic investigated.

View Article and Find Full Text PDF

Five novel Gd(iii) complexes based on the structure of the heptadentate macrocyclic 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) ligand have been synthesized and their (1)H and (17)O NMR relaxometric properties investigated in detail. The complexes have been functionalised on the secondary nitrogen atom of the macrocyclic ring with different pendant groups for promoting their ability to interact non-covalently with human serum albumin (HSA). The analysis of the proton relaxivity, measured as a function of pH and magnetic field strength, have revealed that the three complexes bearing a poly(ethylene glycol)(PEG) chain possess a single coordinated water molecule, whereas the complexes functionalised with 1-[3-(2-hydroxyphenyl)]-propyl and 1-[3-(2-carboxyphenyloxy)]-propyl pendant groups have two inner sphere water molecules.

View Article and Find Full Text PDF

[structure: see text] Poly(ethylene glycol)-supported TEMPO (PEG-TEMPO) has been prepared, and its catalytic activity in the chemoselective oxidation of alcohols with stoichiometric amounts of organic or inorganic oxidants has been investigated. The new metal-free catalyst exhibits high activity and is easily removed from the reaction mixture by filtration. Recycling experiments showed that PEG-TEMPO can be reused up to six times with no loss of catalytic activity.

View Article and Find Full Text PDF

Two new poly(ethylene glycol) supported manganese porphyrins have been prepared and their catalytic activity and recyclability were investigated for the epoxidation of alkenes using H2O2 and PhIO as stoichiometric oxidants.

View Article and Find Full Text PDF

[reaction: see text] A new poly(ethylene glycol)-supported porphyrin has been prepared and its ability as a promoter in photooxidation reactions has been studied. The PEG-supported catalyst exhibits high activity, comparable to that of a nonanchored sensitizer, and it is easily removable by filtration from the reaction mixture. The polymer-bound porphyrin has been recycled up to six times with no loss of chemical and stereochemical efficiency.

View Article and Find Full Text PDF