Fractal structures pervade nature and are receiving increasing engineering attention towards the realization of broadband resonators and antennas. We show that fractal resonators can support the emergence of high-dimensional chaotic dynamics even in the context of an elementary, single-transistor oscillator circuit. Sierpiński gaskets of variable depth are constructed using discrete capacitors and inductors, whose values are scaled according to a simple sequence.
View Article and Find Full Text PDFBackground: We aimed to investigate the effect of cell-cell dipole interactions in the equilibrium distributions in dielectrophoretic devices.
Methods: We used a three dimensional coupled Monte Carlo-Poisson method to theoretically study the final distribution of a system of uncharged polarizable particles suspended in a static liquid medium under the action of an oscillating non-uniform electric field generated by polynomial electrodes. The simulated distributions have been compared with experimental ones observed in the case of MDA-MB-231 cells in the same operating conditions.