Publications by authors named "Gianluca Deflorian"

The Netrin-1 receptor UNC5B is an axon guidance regulator that is also expressed in endothelial cells (ECs), where it finely controls developmental and tumor angiogenesis. In the absence of Netrin-1, UNC5B induces apoptosis that is blocked upon Netrin-1 binding. Here, we identify an UNC5B splicing isoform (called UNC5B-Δ8) expressed exclusively by ECs and generated through exon skipping by NOVA2, an alternative splicing factor regulating vascular development.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

We developed a novel reporter transgenic zebrafish model called MITO-Luc/GFP zebrafish in which GFP and luciferase expression are under the control of the master regulator of proliferation NF-Y. In MITO-Luc/GFP zebrafish it is possible to visualize cell proliferation in vivo by fluorescence and bioluminescence. In this animal model, GFP and luciferase expression occur in early living embryos, becoming tissue specific in juvenile and adult zebrafish.

View Article and Find Full Text PDF

Histone deacetylase 8 (HDAC8), a class I HDAC that modifies non-histone proteins such as p53, is highly expressed in different hematological neoplasms including a subtype of acute myeloid leukemia (AML) bearing inversion of chromosome 16 [inv(16)]. To investigate HDAC8 contribution to hematopoietic stem cell maintenance and myeloid leukemic transformation, we generated a zebrafish model with Hdac8 overexpression and observed an increase in hematopoietic stem/progenitor cells, a phenotype that could be reverted using a specific HDAC8 inhibitor, PCI-34051 (PCI). In addition, we demonstrated that AML cell lines respond differently to PCI treatment: HDAC8 inhibition elicits cytotoxic effect with cell cycle arrest followed by apoptosis in THP-1 cells, and cytostatic effect in HL60 cells that lack p53.

View Article and Find Full Text PDF

It is unclear whether the establishment of apical-basal cell polarity during the generation of epithelial lumens requires molecules acting at the plasma membrane/actin interface. Here, we show that the I-BAR-containing IRSp53 protein controls lumen formation and the positioning of the polarity determinants aPKC and podocalyxin. Molecularly, IRSp53 acts by regulating the localization and activity of the small GTPase RAB35, and by interacting with the actin capping protein EPS8.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a hereditary disease due to mutations in the CFTR gene and causes mortality in humans mainly due to respiratory infections caused by Pseudomonas aeruginosa. In a previous work we used phage therapy, which is a treatment with a mix of phages, to actively counteract acute P. aeruginosa infections in mice and Galleria mellonella larvae.

View Article and Find Full Text PDF

Homozygous mutations in SNAP29, encoding a SNARE protein mainly involved in membrane fusion, cause CEDNIK (Cerebral Dysgenesis, Neuropathy, Ichthyosis and Keratoderma), a rare congenital neurocutaneous syndrome associated with short life expectancy, whose pathogenesis is unclear. Here, we report the analysis of the first genetic model of CEDNIK in zebrafish. Strikingly, homozygous snap29 mutant larvae display CEDNIK-like features, such as microcephaly and skin defects.

View Article and Find Full Text PDF
Article Synopsis
  • The nucleophosmin 1 gene (NPM1) is the most commonly mutated gene in acute myeloid leukemia (AML) and often occurs alongside other mutations in cohesin genes.
  • In a study of adult AML patients, a specific reduction in a cohesin gene's expression was observed in those with NPM1 mutations, which was also reflected in a zebrafish model.
  • The research indicated that downregulating the targeted cohesin gene led to increased myeloid progenitors due to hyper-activation of the Wnt signaling pathway, suggesting a complex relationship between NPM1 mutations and myeloid cell differentiation.*
View Article and Find Full Text PDF

During embryonic development, new arteries, and veins form from preexisting vessels in response to specific angiogenic signals. Angiogenic signaling is complex since not all endothelial cells exposed to angiogenic signals respond equally. Some cells will be selected to become tip cells and acquire migration and proliferation capacity necessary for vessel growth while others, the stalk cells become trailer cells that stay connected with pre-existing vessels and act as a linkage to new forming vessels.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how cells move and found that a protein called RAB5A helps many cells move together in a coordinated way.
  • When RAB5A is present, cells can push and pull on each other better, leading to exciting movement even when they usually don’t move.
  • This teamwork in cell movement could help cancer cells spread in the body, which is important for understanding how tumors grow.
View Article and Find Full Text PDF

Nucleophosmin (NPM1) is a ubiquitous multifunctional phosphoprotein with both oncogenic and tumor suppressor functions. Mutations of the NPM1 gene are the most frequent genetic alterations in acute myeloid leukemia (AML) and result in the expression of a mutant protein with aberrant cytoplasmic localization, NPMc+. Although NPMc+ causes myeloproliferation and AML in animal models, its mechanism of action remains largely unknown.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and non-histone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B.

View Article and Find Full Text PDF

Vascular lumen formation is a fundamental step during angiogenesis; yet, the molecular mechanisms underlying this process are poorly understood. Recent studies have shown that neural and vascular systems share common anatomical, functional and molecular similarities. Here we show that the organization of endothelial lumen is controlled at the post-transcriptional level by the alternative splicing (AS) regulator Nova2, which was previously considered to be neural cell-specific.

View Article and Find Full Text PDF

Cells entering mitosis become rounded, lose attachment to the substrate, and increase their cortical rigidity. Pivotal to these events is the dismantling of focal adhesions (FAs). How mitotic reshaping is linked to commitment to divide is unclear.

View Article and Find Full Text PDF

Notch signaling in prominently involved in growth regulation in metazoan tissues. Because of this, Notch is often upregulated in cancer and current efforts point to developing drugs that block its activation. Notch receptor endocytosis towards acidic compartments is a recently appreciated determinant of signaling activation.

View Article and Find Full Text PDF

Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth. Although subtle alterations in Notch activity suffice to elicit profound differences in endothelial behaviour and blood vessel formation, little is known about the regulation and adaptation of endothelial Notch responses. Here we report that the NAD(+)-dependent deacetylase SIRT1 acts as an intrinsic negative modulator of Notch signalling in endothelial cells.

View Article and Find Full Text PDF

Prep1 is a developmentally essential TALE class homeodomain transcription factor. In zebrafish and mouse, Prep1 is already ubiquitously expressed at the earliest stages of development, with important tissue-specific peculiarities. The Prep1 gene in mouse is developmentally essential and has haploinsufficient tumor suppressor activity [1].

View Article and Find Full Text PDF

Segmentation is a key step in embryonic development. Acting in all germ layers, it is responsible for the generation of antero-posterior asymmetries. Hox genes, with their diverse expression in individual segments, are fundamental players in the determination of different segmental fates.

View Article and Find Full Text PDF

The lack of a sufficient number of antibodies represents an obstacle in the research performed using the zebrafish (Danio rerio) as a model organism. On the other hand, high-throughput generation of antibodies, especially those suitable for immunohistochemistry, is not an established methodology. Here we present the results of an immunization experiment with a zebrafish tissue lysate that allowed for the isolation of hundreds of monoclonal antibodies suitable for labeling of a large variety of zebrafish tissue and cell structures.

View Article and Find Full Text PDF

PRDM genes are a family of transcriptional regulators that modulate cellular processes such as differentiation, cell growth and apoptosis. Some family members are involved in tissue or organ maturation, and are differentially expressed in specific phases of embryonic development. PRDM5 is a recently identified family member that functions as a transcriptional repressor and behaves as a putative tumor suppressor in different types of cancer.

View Article and Find Full Text PDF

Constitutively active, 'oncogenic' H-RAS can drive proliferation and transformation in human cancer, or be a potent inducer of cellular senescence. Moreover, aberrant activation of the Ras pathway owing to germline mutations can cause severe developmental disorders. In this study we have generated transgenic zebrafish that constitutively express low levels, or can be induced to express high levels, of oncogenic H-RAS.

View Article and Find Full Text PDF

We used transgenic zebrafish expressing GFP or YFP in subpopulations of neurons to study the migration, homing process and axon extension of groups of CNS neurons in different regions of the zebrafish brain. We found that extensive migration takes place at all levels of the CNS and gives rise to nuclei or cell populations with specific identities. Here, we describe 4 previously unknown or only partially characterized migratory events taking place in the zebrafish telencephalon and rhombic lip, using 3 different transgenic lines, and identify the phenotypes of the cells undertaking these migrations.

View Article and Find Full Text PDF

The traditional framework for the description of arthropod development takes the molt-to-molt interval as the fundamental unit of periodization, which is similar to the morphological picture of the main body axis as a series of segments. Developmental time is described as the subdivision into a few major stages of one or more instars each, which is similar to the subdivision of the main body axis into regions of one to many segments each. Parallel to recent criticisms to the segment as the fundamental building block of arthropod anatomy, we argue that, while a firm subdivision of development in stages is useful for describing arthropod ontogeny, this is limiting as a starting point for studying its evolution.

View Article and Find Full Text PDF

olig genes encode a previously unrecognized group of vertebrate-specific basic helix-loop-helix transcription factors. As shown in mice, chickens, and zebrafish, two members of this group, olig1 and olig2, are involved in the differentiation of motoneurons and oligodendrocytes, but nothing is known about the role of the third member, olig3. Here, we show that olig3 plays an essential role in the establishment of the neural crest-lateral neural plate boundary.

View Article and Find Full Text PDF

Sox proteins are DNA-binding proteins belonging to the HMG box superfamily and they play key roles in animal embryonic development. Zebrafish Sox21a is part of group B Sox proteins and its chicken and mouse orthologs have been described as transcriptional repressor and activator, respectively, in two different target gene contexts. Zebrafish sox21a is present as a maternal transcript in the oocyte and is mainly expressed at the developing midbrain-hindbrain boundary from the onset of neurulation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: