Lin28 RNA-binding proteins are stem-cell factors that play key roles in development. Lin28 suppresses the biogenesis of let-7 microRNAs and regulates mRNA translation. Notably, let-7 inhibits Lin28, establishing a double-negative feedback loop.
View Article and Find Full Text PDFA series of novel σ receptor ligands with a 4-(2-aminoethyl)piperidine scaffold was prepared and biologically evaluated. The underlying concept of our project was the improvement of the lipophilic ligand efficiency of previously synthesized potent σ ligands. The key steps of the synthesis comprise the conjugate addition of phenylboronic acid at dihydropyridin-4(1H)-ones 7, homologation of the ketones 8 and introduction of diverse amino moieties and piperidine N-substituents.
View Article and Find Full Text PDFThe TMPRSS2-ERG gene fusion is the most frequent alteration observed in human prostate cancer. However, its role in disease progression is still unclear. In this study, we uncover an important mechanism promoting ERG oncogenic activity.
View Article and Find Full Text PDF1,3-Dioxanes 1 and cyclohexanes 2 bearing a phenyl ring and an aminoethyl moiety in 1,3-relationship to each other represent highly potent σ receptor antagonists. In order to increase the chemical stability of the acetalic 1,3-dioxanes 1 and the polarity of the cyclohexanes 2, tetrahydropyran derivatives 3 equipped with the same substituents were designed, synthesized and pharmacologically evaluated. The key step of the synthesis was a lipase-catalyzed enantioselective acetylation of the alcohol (R)-5 leading finally to enantiomerically pure test compounds 3a-g.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are relevant means for transferring signals across cells and facilitate propagation of oncogenic stimuli promoting disease evolution and metastatic spread in cancer patients. Here, we investigated the release of miR-424 in circulating small EVs or exosomes from prostate cancer patients and assessed the functional implications in multiple experimental models. We found higher frequency of circulating miR-424 positive EVs in patients with metastatic prostate cancer compared to patients with primary tumors and BPH.
View Article and Find Full Text PDFDepending on the substitution pattern and stereochemistry, 1,3-dioxanes 1 with an aminoethyl moiety in 4-position represent potent σ receptor antagonists. In order to increase the stability, a cyclohexane ring first replaced the acetalic 1, 3-dioxane ring of 1. A large set of aminoethyl substituted cyclohexane derivatives was prepared in a six-step synthesis.
View Article and Find Full Text PDFState-of-the-art small interfering RNA (siRNA) therapeutics such as givosiran and fitusiran are constructed from three variable components: a fully-modified RNA core that conveys metabolic stability, a targeting moiety that mediates target-cell uptake, and a linker. This structural complexity poses challenges for metabolite characterization and risk assessment after long-term patient exposure. In this study, we show that basic phosphorothioate modification of a siRNA targeting the oncoprotein Lin28B provides a useful increase in metabolic stability, without greatly compromising potency.
View Article and Find Full Text PDFThe emergence of therapy-resistant cancer stem cells (CSCs) limit the efficacy of prostate cancer treatment. Using genetic knockdown and chemical inhibitors, we demonstrate the critical role of Bromodomain Containing 4 (BRD4) in promoting mitochondrial fission and sustaining CSC expansion. These findings provide a new paradigm for developing novel treatment strategies for prostate cancer.
View Article and Find Full Text PDFBackground: Chemotherapy is the treatment of choice for metastatic castration-resistant prostate cancer (mCRPC) nonresponsive to androgen receptor-targeted therapies. Nevertheless, the impact of chemotherapy on patient survival is limited and clinical outcome remain dismal. Bromodomain and extraterminal inhibitors (BETis) are attractive therapeutic agents and currently in clinical trials to be tested for their efficacy in prostate cancer patients.
View Article and Find Full Text PDFBackground: The TMPRSS2-ERG gene fusion is the most frequent genetic rearrangement in prostate cancers and results in broad transcriptional reprogramming and major phenotypic changes. Interaction and cooperation of ERG and SP1 may be instrumental in sustaining the tumorigenic and metastatic phenotype and could represent a potential vulnerability in ERG fusion-positive tumors.
Objective: To test the activity of EC-8042, a compound able to block SP1, in cellular and mouse models of ERG-positive prostate cancer.
Prostate cancer is the most common malignancy in men and the second cause of cancer-related deaths in western countries. Despite the progress in the treatment of localized prostate cancer, there is still lack of effective therapies for the advanced forms of the disease. Most patients with advanced prostate cancer become resistant to androgen deprivation therapy (ADT), which remains the main therapeutic option in this setting, and progress to lethal metastatic castration-resistant prostate cancer (mCRPC).
View Article and Find Full Text PDFCancer stem cells (CSCs) contribute to disease progression and treatment failure in human cancers. The balance among self-renewal, differentiation, and senescence determines the expansion or progressive exhaustion of CSCs. Targeting these processes might lead to novel anticancer therapies.
View Article and Find Full Text PDFIn the HTML version of this article initially published, the name of author Diletta Di Mitri was miscoded in the XML such that Di was included as part of the given name instead of the family name. The error has been corrected in the HTML version of the article.
View Article and Find Full Text PDFProstate cancer (PCa) is the most common malignant visceral neoplasm in males in Western countries. Despite progress made in the early treatment of localized malignancies, there remains a need for therapies effective against advanced forms of the disease. Genetically engineered mouse (GEM) models are valuable tools for addressing this issue, particularly in defining the cellular and molecular mechanisms responsible for tumor initiation and progression.
View Article and Find Full Text PDFThe mechanisms by which mitochondrial metabolism supports cancer anabolism remain unclear. Here, we found that genetic and pharmacological inactivation of pyruvate dehydrogenase A1 (PDHA1), a subunit of the pyruvate dehydrogenase complex (PDC), inhibits prostate cancer development in mouse and human xenograft tumor models by affecting lipid biosynthesis. Mechanistically, we show that in prostate cancer, PDC localizes in both the mitochondria and the nucleus.
View Article and Find Full Text PDFIt is generally assumed that recurrent mutations within a given cancer driver gene elicit similar drug responses. Cancer genome studies have identified recurrent but divergent missense mutations affecting the substrate-recognition domain of the ubiquitin ligase adaptor SPOP in endometrial and prostate cancers. The therapeutic implications of these mutations remain incompletely understood.
View Article and Find Full Text PDFLong noncoding RNAs are emerging players in the epigenetic machinery with key roles in development and diseases. Here we uncover a complex network comprising a promoter-associated noncoding RNA (paRNA), microRNA and epigenetic regulators that controls transcription of the tumour suppressor E-cadherin in epithelial cancers. E-cadherin silencing relies on the formation of a complex between the paRNA and microRNA-guided Argonaute 1 that, together, recruit SUV39H1 and induce repressive chromatin modifications in the gene promoter.
View Article and Find Full Text PDFThere are many classes of noncoding RNAs (ncRNAs), with wide-ranging functionalities (e.g., RNA editing, mediation of mRNA splicing, ribosomal function).
View Article and Find Full Text PDFMutations and deletions in components of ubiquitin ligase complexes that lead to alterations in protein turnover are important mechanisms in driving tumorigenesis. Here we describe an alternative mechanism involving upregulation of the microRNA miR-424 that leads to impaired ubiquitination and degradation of oncogenic transcription factors in prostate cancers. We found that miR-424 targets the E3 ubiquitin ligase COP1 and identified STAT3 as a key substrate of COP1 in promoting tumorigenic and cancer stem-like properties in prostate epithelial cells.
View Article and Find Full Text PDFNew discoveries in RNA biology underscore a need for chemical tools to clarify their roles in pathophysiological mechanisms. In certain cancers, synthesis of the let-7 microRNA tumor suppressor is blocked by an RNA binding protein (RBP) Lin28, which docks onto a conserved sequence in let-7 precursor RNA molecules and prevents their maturation. Thus, the Lin28/let-7 interaction might be an attractive drug target, if not for the well-known difficulty in targeting RNA-protein interactions with drugs.
View Article and Find Full Text PDFMetastatic prostate cancer represents a yet unsolved clinical problem due to the high frequency of relapse and treatment resistance. Understanding the pathways that lead to prostate cancer progression is an important task to prevent this deadly disease. The ETS transcription factor ESE3/EHF has an important role in differentiation of human prostate epithelial cells.
View Article and Find Full Text PDF