The solid supported membrane (SSM) represents a convenient model system for a biological membrane with the advantage of being mechanically so stable that solutions can be rapidly exchanged at the surface. The SSM consists of a hybrid alkanethiol-phospholipid bilayer supported by a gold electrode. Proteoliposomes, membrane vesicles, or membrane fragments containing the transport protein of interest are adsorbed on the SSM surface and are subjected to a rapid substrate concentration jump.
View Article and Find Full Text PDFHydrolytic activity is an important functional parameter of enzymes like adenosinetriphosphatases (ATPases). It is measured to test enzyme functionality, but it also provides useful information on possible inhibitory effects of molecules that interfere with the hydrolytic process. Here, we describe a molybdenum-based protocol that makes use of potassium antimony (III) oxide tartrate and may be valuable in biochemical and biomedical investigations of ATPase enzymes as well as in high-throughput drug screening.
View Article and Find Full Text PDFSarco-endoplasmic reticulum Ca2+-ATPase (SERCA), a P-type ATPase that sustains Ca2+ transport and plays a major role in intracellular Ca2+ homeostasis, represents a therapeutic target for cancer therapy. Here, we investigated whether ruthenium-based anticancer drugs, namely KP1019 (indazolium [trans-tetrachlorobis(1H-indazole)ruthenate(III)]), NAMI-A (imidazolium [trans-tetrachloro(1H-imidazole)(S-dimethylsulfoxide)ruthenate(III)]) and RAPTA-C ([Ru(η6-p-cymene)dichloro(1,3,5-triaza-7-phosphaadamantane)]), and cisplatin (cis-diammineplatinum(II) dichloride) might act as inhibitors of SERCA. Charge displacement by SERCA adsorbed on a solid-supported membrane was measured after ATP or Ca2+ concentration jumps.
View Article and Find Full Text PDFCisplatin, carboplatin, and oxaliplatin are widely used anticancer drugs. Their efficacy is strongly reduced by development of cell resistance. Down-regulation of CTR1 and up-regulation of the Cu-ATPases, ATP7A and ATP7B, have been associated to augmented drug resistance.
View Article and Find Full Text PDFBackground And Purpose: Calcium handling is known to be deranged in heart failure. Interventions aimed at improving cell Ca(2) (+) cycling may represent a promising approach to heart failure therapy. Istaroxime is a new luso-inotropic compound that stimulates cardiac contractility and relaxation in healthy and failing animal models and in patients with acute heart failure (AHF) syndrome.
View Article and Find Full Text PDFThe detection of small amounts (nanomoles) of inorganic phosphate has a great interest in biochemistry. In particular, phosphate detection is useful to evaluate the rate of hydrolysis of phosphatases, that are enzymes able to remove phosphate from their substrate by hydrolytic cleavage. The hydrolysis rate is correlated to enzyme activity, an extremely important functional parameter.
View Article and Find Full Text PDFThe intramolecular hydrogen bond formed between a protonated amine and a neighboring H-bond acceptor group in the side chain of amodiaquine and isoquine is thought to play an important role in their antimalarial activities. Here we describe isoquine-based compounds in which the intramolecular H-bond is mimicked by a methylene linker. The antimalarial activities of the resulting benzoxazines, their isosteric tetrahydroquinazoline derivatives, and febrifugine-based 1,3-quinazolin-4-ones were examined in vitro (against Plasmodium falciparum ) and in vivo (against Plasmodium berghei ).
View Article and Find Full Text PDFCa(2+) (sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA)) and Cu(+) (ATP7A/B) ATPases utilize ATP through formation of a phosphoenzyme intermediate (E-P) whereby phosphorylation potential affects affinity and orientation of bound cation. SERCA E-P formation is rate-limited by enzyme activation by Ca(2+), demonstrated by the addition of ATP and Ca(2+) to SERCA deprived of Ca(2+) (E2) as compared with ATP to Ca(2+)-activated enzyme (E1·2Ca(2+)). Activation by Ca(2+) is slower at low pH (2H(+)·E2 to E1·2Ca(2+)) and little sensitive to temperature-dependent activation energy.
View Article and Find Full Text PDFSeveral clotrimazole (CLT) and 4-aminoquinoline derivatives were synthesized and found to exhibit in vitro antiplasmodial activity with IC(50) ranging from nm to μm values. We report here that some of these compounds produce inhibition of rabbit sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1) with IC(50) values in the μm range. The highest affinity for the Ca(2+)-ATPase was observed with NF1442 (N-((3-chlorophenyl)(4-((4-(7-chloroquinolin-4-yl)piperazin-1-yl)methyl)phenyl)methyl)-7-chloro-4-aminoquinoline) and NF1058 (N-((3-chlorophenyl)(4-(pyrrolidin-1-ylmethyl)phenyl)methyl)-7-chloro-4-aminoquinoline),yielding IC(50) values of 1.
View Article and Find Full Text PDFATP7B is a copper dependent P-type ATPase, required for copper homeostasis. Taking advantage of high yield heterologous expression of recombinant protein, we investigated charge transfer in ATP7B. We detected charge displacement within a single catalytic cycle upon ATP addition and formation of phosphoenzyme intermediate.
View Article and Find Full Text PDFThe effect of Pb(2+) ions on the Na(+),K(+)-ATPase was investigated in detail by means of steady-state fluorescence spectroscopy. Experiments were performed by using the electrochromic styryl dye RH421. It is shown that Pb(2+) ions can bind reversibly to the protein and do not affect the Na(+) and K(+) binding affinities in the E(1) and P-E(2) conformations of the enzyme.
View Article and Find Full Text PDFThe effect of Pb(2+) on the transport cycle of the Na(+),K(+)-ATPase was characterized in detail at a molecular level by combining electrical and biochemical measurements. Electrical measurements were performed by adsorbing purified membrane fragments containing Na(+),K(+)-ATPase on a solid-supported membrane. Upon adsorption, the Na(+),K(+)-ATPase was activated by carrying out concentration jumps of different activating substrates, for example, Na(+) and ATP.
View Article and Find Full Text PDFHigh-yield heterologous SERCA1 (Ca(2+) ATPase) expression was obtained in COS-1 cells infected with recombinant adenovirus vector (rAdSERCA). Higher transcription and expression were obtained in the presence of a His(6) tag at the amino terminus, as compared with a His(6) tag at the carboxyl SERCA terminus, or no tag. The expressed protein was targeted extensively to intracellular membranes.
View Article and Find Full Text PDFThe effect of the antimycotic drug clotrimazole (CLT) on the Na,K-ATPase was investigated using fluorescence and electrical measurements. The results obtained by steady-state fluorescence experiments with the electrochromic styryl dye RH421 were combined with those achieved by a pre-steady-state method based on fast solution exchange on a solid supported membrane that adsorbs the protein. Both techniques are suitable for monitoring the electrogenic steps of the pump cycle and are in general complementary, yielding distinct kinetic information.
View Article and Find Full Text PDFPlanar lipid bilayers, e.g., black lipid membranes (BLM) and solid supported membranes (SSM), have been employed to investigate charge movements during the reaction cycle of P-type ATPases.
View Article and Find Full Text PDFThe inhibitory effects of thapsigargin, cyclopiazonic acid, and 2,5-di(tert-butyl)hydroquinone, and 1,3-dibromo-2,4,6-tri(methylisothiouronium)benzene on the Ca(2+) ATPase were characterized by comparative measurements of sequential reactions of the catalytic and transport cycle, including biochemical measurements and detection of charge movements within a single cycle. In addition, patterns of ATPase proteolytic digestion with proteinase K were derived to follow conformational changes through the cycle or after inhibitor binding. We find that thapsigargin, cyclopiazonic acid, and 2,5-di(tert-butyl)hydroquinone inhibit Ca(2+) binding and catalytic activation as demonstrated with isotopic tracers and lack of charge movement upon addition of Ca(2+) in the absence of ATP.
View Article and Find Full Text PDFSarcoplasmic reticulum (SR) vesicles were adsorbed on an octadecanethiol/phosphatidylcholine mixed bilayer anchored to a gold electrode, and the Ca-ATPase contained in the vesicles was activated by ATP concentration jumps in the presence of calcium ions. The resulting capacitive current transients are compared with those calculated on the basis of the enzymatic cycle of the calcium pump. This comparison provides information on the kinetics of the E(2)-E(1) conformational change and on its pH dependence.
View Article and Find Full Text PDFNative or recombinant SERCA (sarco(endo)plasmic reticulum Ca(2+) ATPase) was adsorbed on a solid supported membrane and then activated with Ca(2+) and ATP concentration jumps through rapid solution exchange. The resulting electrogenic events were recorded as electrical currents flowing along the external circuit. Current transients were observed following Ca(2+) jumps in the absence of ATP and following ATP jumps in the presence of Ca(2+).
View Article and Find Full Text PDFClotrimazole (CLT) is an antimycotic imidazole derivative that is known to inhibit cytochrome P-450, ergosterol biosynthesis and proliferation of cells in culture, and to interfere with cellular Ca(2+) homeostasis. We found that CLT inhibits the Ca(2+)-ATPase of rabbit fast-twitch skeletal muscle (SERCA1), and we characterized in detail the effect of CLT on this calcium transport ATPase. We used biochemical methods for characterization of the ATPase and its partial reactions, and we also performed measurements of charge movements following adsorption of sarcoplasmic reticulum vesicles containing the ATPase onto a gold-supported biomimetic membrane.
View Article and Find Full Text PDFSarcoplasmic reticulum vesicles were adsorbed on an octadecanethiol/phosphatidylcholine mixed bilayer anchored to a gold electrode, and the Ca-ATPase contained in the vesicles was activated by ATP concentration jumps both in the absence and in the presence of K(+) ions and at different pH values. Ca(2+) concentration jumps in the absence of ATP were also carried out. The resulting capacitive current transients were analyzed together with the charge under the transients.
View Article and Find Full Text PDF