Circ Arrhythm Electrophysiol
October 2021
[Figure: see text].
View Article and Find Full Text PDFKv2.1 is a voltage-gated potassium (Kv) channel alpha-subunit expressed in mammalian heart and brain. MinK-related peptides (MiRPs), encoded by KCNE genes, are single-transmembrane domain ancillary subunits that form complexes with Kv channel alpha-subunits to modify their function.
View Article and Find Full Text PDFAims: KCNQ1-MinK potassium channel complexes (4alpha:2beta stoichiometry) generate IKs, the slowly activating human cardiac ventricular repolarization current. The MinK ancillary subunit slows KCNQ1 activation, eliminates its inactivation, and increases its unitary conductance. However, KCNQ1 transcripts outnumber MinK transcripts five to one in human ventricles, suggesting KCNQ1 also forms other heteromeric or even homomeric channels there.
View Article and Find Full Text PDFMost voltage-gated potassium (Kv) channels undergo C-type inactivation during sustained depolarization. The voltage dependence and other mechanistic aspects of this process are debated, and difficult to elucidate because of concomitant voltage-dependent activation. Here, we demonstrate that MinK-KCNQ1 (I(Ks)) channels with an S6-domain mutation, F340W in KCNQ1, exhibit constitutive activation but voltage-dependent C-type inactivation.
View Article and Find Full Text PDFAims: Auditory stimulus-induced long QT syndrome (LQTS) is almost exclusively linked to mutations in the hERG potassium channel, which generates the I Kr ventricular repolarization current. Here, a young woman with prior episodes of auditory stimulus-induced syncope presented with LQTS and ventricular fibrillation (VF) with hypomagnesaemia and hypocalcaemia after completing a marathon, followed by subsequent VF with hypokalaemia. The patient was found to harbour a KCNE2 gene mutation encoding a T10M amino acid substitution in MiRP1, an ancillary subunit that co-assembles with and functionally modulates hERG.
View Article and Find Full Text PDFVoltage-gated potassium (Kv) channels extend their functional repertoire by coassembling with MinK-related peptides (MiRPs). MinK slows the activation of channels formed with KCNQ1 alpha subunits to generate the voltage-dependent I(Ks) channel in human heart; MiRP1 and MiRP2 remove the voltage dependence of KCNQ1 to generate potassium "leak" currents in gastrointestinal epithelia. Other Kv alpha subunits interact with MiRP1 and MiRP2 but without loss of voltage dependence; the mechanism for this disparity is unknown.
View Article and Find Full Text PDFVoltage-gated potassium channels (Kv channels) are the major determinants of cellular repolarization in excitable cells--they open in response to depolarization and facilitate selective efflux of potassium ions across the plasma membrane. Because of the importance of exquisitely timed cellular repolarization in controlling action potential morphology and duration, Kv channels are attractive therapeutic targets, particularly for drugs aimed at controlling aberrant electrical excitability such as is observed in cardiac arrhythmia and epilepsy. While the pore-forming alpha subunits of Kv channels are sufficient to form functional channels, a host of cytoplasmic and transmembrane ancillary subunits modulate their trafficking, function and regulation in vivo.
View Article and Find Full Text PDFKCNQ1 alpha subunits form functionally distinct potassium channels by coassembling with KCNE ancillary subunits MinK and MiRP2. MinK-KCNQ1 channels generate the slowly activating, voltage-dependent cardiac IKs current. MiRP2-KCNQ1 channels form a constitutively active current in the colon.
View Article and Find Full Text PDFTranscription initiation is a major target for the regulation of gene expression in all organisms. Transcription activators can stimulate different steps in the initiation process including the initial binding of RNA polymerase (RNAP) to the promoter and a subsequent promoter-melting step. Typically, kinetic assays are required to determine whether an activator exerts its effect on the initial binding of RNAP or on the promoter-melting step.
View Article and Find Full Text PDFDelayed rectifier potassium current diversity and regulation are essential for signal processing and integration in neuronal circuits. Here, we investigated a neuronal role for MinK-related peptides (MiRPs), membrane-spanning modulatory subunits that generate phenotypic diversity in cardiac potassium channels. Native coimmunoprecipitation from rat brain membranes identified two novel potassium channel complexes, MiRP2-Kv2.
View Article and Find Full Text PDFThe physiological properties of most ion channels are defined experimentally by functional expression of their pore-forming alpha subunits in Xenopus laevis oocytes. Here, we cloned a family of Xenopus KCNE genes that encode MinK-related peptide K(+) channel beta subunits (xMiRPs) and demonstrated their constitutive expression in oocytes. Electrophysiological analysis of xMiRP2 revealed that when overexpressed this gene modulates human cardiac K(+) channel alpha subunits HERG (human ether-a-go-go-related gene) and KCNQ1 by suppressing HERG currents and removing the voltage dependence of KCNQ1 activation.
View Article and Find Full Text PDF