Specialized or secondary metabolites are small molecules of biological origin, often showing potent biological activities with applications in agriculture, engineering and medicine. Usually, the biosynthesis of these natural products is governed by sets of co-regulated and physically clustered genes known as biosynthetic gene clusters (BGCs). To share information about BGCs in a standardized and machine-readable way, the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard and repository was initiated in 2015.
View Article and Find Full Text PDFMost bacteria live in biofilms in their natural habitat rather than the planktonic cell stage that dominates during traditional laboratory cultivation and enrichment schemes. The present study describes the establishment of a flow-based enrichment method based on multispecies biofilm communities for directing biofilm functionality using an environmental inoculum. By controlling flow conditions and physio-chemical properties, the set-up aims to simulate natural conditions ex situ for biofilm formation.
View Article and Find Full Text PDFA new dye-decolorizing peroxidase (DyP) was discovered through a data mining workflow based on HMMER software and profile Hidden Markov Model (HMM) using a dataset of 1200 genomes originated from a Actinobacteria strain collection isolated from Trondheim fjord. Instead of the conserved GXXDG motif known for Dyp-type peroxidases, the enzyme contains a new conserved motif EXXDG which has been not reported before. The enzyme can oxidize an anthraquinone dye Remazol Brilliant Blue R (Reactive Blue 19) and other phenolic compounds such as ferulic acid, sinapic acid, caffeic acid, 3-methylcatechol, dopamine hydrochloride, and tannic acid.
View Article and Find Full Text PDFMarine environments are home to an extensive number of microorganisms, many of which remain unexplored for taxonomic novelty and functional capabilities. In this study, a slow-growing strain expressing unique genomic and phenotypic characteristics, P38-E01 , was described using a polyphasic taxonomic approach. This strain is part of a collection of over 8,000 marine Actinobacteria isolates collected in the Trondheim fjord of Norway by SINTEF Industry (Trondheim, Norway) and the Norwegian University of Science and Technology (NTNU, Trondheim, Norway).
View Article and Find Full Text PDFMarine sponges represent a rich source of uncharacterized microbial diversity, and many are host to microorganisms that produce biologically active specialized metabolites. Here, a polyphasic approach was used to characterize two Actinobacteria strains, P01-B04 and P01-F02, that were isolated from the marine sponges Geodia barretti (Bowerbank, 1858) and Antho dichotoma (Esper, 1794), respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains P01-B04 and P01-F02 are closely related to Streptomyces beijiangensis DSM 41794, Streptomyces laculatispora NRRL B-24909, and Streptomyces brevispora NRRL B-24910.
View Article and Find Full Text PDFBackground: Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that catalyze oxidative depolymerization of industrially relevant crystalline polysaccharides, such as cellulose, in a reaction that depends on an electron donor and O or HO. While it is well known that LPMOs can utilize a wide variety of electron donors, the variation in reported efficiencies of various LPMO-reductant combinations remains largely unexplained.
Results: In this study, we describe a novel two-domain cellulose-active family AA10 LPMO from a marine actinomycete, which we have used to look more closely at the effects of the reductant and copper ions on the LPMO reaction.
Enzyme Microb Technol
March 2013
The expression and characterization of a nitrile reductase from Escherichia coli K-12 (EcoNR), a newly discovered enzyme class, is described. This enzyme has a potential application for an alternative nitrile reduction pathway. The enzyme activity towards its natural substrate, preQ(0), was demonstrated and optimal working conditions were found to be at 37°C and at pH 7 with Tris buffer.
View Article and Find Full Text PDFAn esterase from Pseudomonas putida JD1 (PPE) was successfully cloned, actively expressed in Escherichia coli, and characterized. It was discovered that PPE is more active towards short-chain esters, hydrolyzed δ-valerolactone, and ε-caprolactone and was most active at 37°C and pH 8. After purification to homogeneity by Ni-NTA-assisted affinity chromatography, the kinetic parameters K(M) and k(cat) were determined for p-nitrophenyl acetate and butyrate, respectively, showing better catalytic efficiency for hydrolysis of the acetate residue.
View Article and Find Full Text PDFThe preparation of enantiopure tertiary alcohols is of great contemporary interest due to the application of these versatile building blocks in organic synthesis and as precursors towards high value pharmaceutical compounds. Herein, we describe two approaches taken towards the discovery of novel biocatalysts for the synthesis of these valuable compounds. The first approach was initiated with screening of 47 bacterial strains for hydrolytic activity towards the simple tertiary alcohol ester tert-butyl acetate.
View Article and Find Full Text PDF