Publications by authors named "Gianfranco Brunetti"

The hot plasma within merging galaxy clusters is predicted to be filled with shocks and turbulence that may convert part of their kinetic energy into relativistic electrons and magnetic fields generating synchrotron radiation. Analyzing Low Frequency Array (LOFAR) observations of the galaxy cluster Abell 2255, we show evidence of radio synchrotron emission distributed over very large scales of at least 5 megaparsec. The pervasive radio emission witnesses that shocks and turbulence efficiently transfer kinetic energy into relativistic particles and magnetic fields in a region that extends up to the cluster outskirts.

View Article and Find Full Text PDF

Radio observations at low frequencies with the low frequency array (LOFAR) start discovering gigantic radio bridges connecting pairs of massive galaxy clusters. These observations probe unexplored mechanisms of in situ particle acceleration that operate on volumes of several Mpc^{3}. Numerical simulations suggest that such bridges are dynamically complex and that weak shocks and super-Alfvénic turbulence can be driven across the entire volume of these regions.

View Article and Find Full Text PDF

Galaxy clusters are the most massive constituents of the large-scale structure of the universe. Although the hot thermal gas that pervades galaxy clusters is relatively well understood through observations with x-ray satellites, our understanding of the nonthermal part of the intracluster medium (ICM) remains incomplete. With Low-Frequency Array (LOFAR) and Giant Metrewave Radio Telescope (GMRT) observations, we have identified a phenomenon that can be unveiled only at extremely low radio frequencies and offers new insights into the nonthermal component.

View Article and Find Full Text PDF

Hot spots (HSs) are regions of enhanced radio emission produced by supersonic jets at the tip of the radio lobes of powerful radio sources. Obtained with the Very Large Telescope (VLT), images of the HSs in the radio galaxy 3C 445 show bright knots embedded in diffuse optical emission distributed along the post-shock region created by the impact of the jet into the intergalactic medium. The observations reported here confirm that relativistic electrons are accelerated by Fermi-I acceleration processes in HSs.

View Article and Find Full Text PDF